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Natural Language Processing

In a nutshell

Book Question Answering (BookQA) is largely un-
explored compared to other QA settings. Unique
characteristics of books (length, literary language,
lack of KBs, little training data) prohibit applica-
tion of state-of-the-art QA methods.

Our contributions:
IWe look at NarrativeQA’s [1] ‘Who’ questions

which have book characters as answers.
IWe evaluate a framework for predicting the

correct answer from the full text of the book.
IWe utilize pretraining on artificial questions.
IWe discuss challenges of full-text BookQA and

identify opportunities for improvements.

The Data:

NarrativeQA questions vary wildly in style. By
constructing a corpus of ’Who’ questions, we:

I Simplify output & evaluation (classification).
I Retain reasoning complexity of original.

Examples from corpus:
Who is Emily in love with? easier ↔ harder
Who is Emily imprisoned by?
Who helps Emily escape from the castle?
Who owns the castle in which Emily is imprisoned?
Who became Emily’s guardian after her father’s death?

� 3427 QA pairs from 614 books.

The Framework:

I Preprocessing: book-nlp parser [2]
I Context Selection: i) BM25F; ii) BERT-based
I Neural Inference: Variant of Key-Value MemNet [3]

Neural Inference with Key-Value Memory Network

Initialization:
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At Hop t:
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qt+1 = qt + ot

After last hop:

p(cj) = softmax(ohCvcj)

Pretraining with Artificial Questions

Original Sentence:
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Artificial Question:

Who had a gift for invention?

I Problem: not enough data for training inference model.
I Our solution: pretrain on artificially generated questions.

IWe use source sentences where a book character is the
subject or object of a verb.

I Simple rules and pruning over dependency tree.

Experimental Setup and Main Results

I Context Selection:
. Top 20 passages (100 sentences).

I Pretraining:
. Pretrain on artificial questions, using

20 previous sentences as context.
. Fine tune on real questions.

I Baselines:
. Most frequent character in book.
. Most frequent character in context.

Metric → P@1 P@5 MRR
Context selection → BM25F BERT BM25F BERT BM25F BERT

Baselines:
Book frequency 15.73 56.29 0.337
Context frequency 10.53 13.80 51.42 53.02 0.276 0.305
No pretraining 15.57±0.97 15.89±0.95 58.18±1.57 58.77±1.29 0.339±0.006 0.343±0.008
Pretrain w/ Artif. Qs 15.92±0.73 18.73±1.07 61.25±0.74 62.81±1.07 0.351±0.005 0.376±0.006

Further Results – Neural Inference
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Further Results – Effect of Pretraining
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Analysis – Question Answerability

correct character mentioned in
context

BM25F 69.7%
BERT 74.7%

full evidence found in context
BM25F

27%
partial evidence found in context 47%
no evidence found in context 26%

I Mentions counted via book-nlp’s character
recognizer.

I Evidence identified via Amazon Mechanical
Turk study.

Challenges & Opportunities

I Inaccurate context selection:
. Book-tailored passage relevance

I Vagueness of literary language:
. Paraphrase detection
. Coreference resolution
. Commonsense knowledge

I Inadequate pretraining:
. Artificial questions that better resemble

real ones (or other auxiliary task).

References

[1] Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gabor
Melis, Edward Grefenstette. The NarrativeQA Reading Comprehension Challenge. (TACL 2018).

[2] David Bamman, Ted Underwood, Noah A. Smith. A Bayesian Mixed Effects Model of Literary
Character. (ACL 2014).

[3] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, Jason
Weston. Key-Value Memory Networks for Directly Reading Documents. (EMNLP 2016).

MRQA2019 Dataset: github.com/stangelid/bookqa-who ∗Corresponding author: s.angelidis@ed.ac.uk


