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Abstract

In this thesis we investigate the novel approach of applying repeat analysis techniques

for the task of web-page segmentation. Web-page segmentation is considered in the

context of Information Retrieval’s content extraction. Previous web-page segmenta-

tion approaches have mainly focused on heuristically analysing the visual appearance

of web-pages in order to identify its main segments. Our approach is novel, in the sense

that it utilizes principled, machine learning ideas, borrowed from the repeat analysis lit-

erature, in order to approach this task. For this purpose a multi-phase system consisting

of phases to sequentially represent and analyse the web-page’s source code was built.

In order to evaluate the system’s performance, we designed and performed a number

of experiments, each focusing on different hypothesis, regarding the usefulness of each

of the system’s component. The obtained results indicated that our approach is very

promising and lends itself to further investigation of this novel idea.
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Chapter 1

Introduction

The world wide web is, by many means, the moving force of modern life. It is being

used by hundreds of millions users every day for professional, commercial, informa-

tional or entertainment reasons. Its vast size, its exponential growth over the years

and the constantly updating content available in it, makes the web the most impressive

information data source to ever exist, far exceeding any physical collections of data.

In addition, the ease of use that characterizes it, makes it accessible to people from

all over the world and can be the mean of distant communication, that would never be

possible otherwise.

The abundance of information available in the web could, in no way, be accessible

to its users without the existence of the Information Retrieval (IR) research area and,

particularly, search engines. Search engines have been a crucial part of the web since

the very early stages it became widely accessible. They provide a very easy way for

any user to identify desired content, while, essentially, filtering the remaining – and,

mostly, irrelevant – information. In fact, at any given moment a user’s information

needs only cover an extremely small portion of the available content. This makes

search engines both undeniably useful for the efficient use of the world wide web, as

well as impressively accurate when it comes to providing precisely what is requested

by the user, as fast as possible.

Such a level of accuracy and response time would never be possible without ex-

tremely sophisticated underlying algorithmic and storage structure. Search engines

are highly complex systems, that consist of many different components working inde-

pendently and in cooperation, in order to provide the best possible experience to the

user.

1
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All search engines, both commercially available ones – like Google, Bing, etc.–, as

well as specific purpose ones – engines for legal, medical, biological etc. professional

use – depend hugely on the existence of large amounts of data, from which their IR

systems will be created. Especially in the case of commercial, web-related search

engines, where the spectrum of covered content is the broader, the process of acquiring,

storing, and utilizing the available data is more prominent than ever.

The general process that relates to the aforementioned gathering and proper uti-

lization of data is commonly referred to as Search Engine Indexing. Search Engine

Indexing is a multi-phase procedure, which can be simplistically described as having

4 major stages of operation. These 4 stages are illustrated in Fig. 1.1.

Web
Pages

Web
Pages

Content
Extraction

Content 
Transformation

Indexing

Figure 1.1: Overview of a search engine’s indexing process

In simple terms the operational pipeline works as follows. Initially, as much data

available – in the form of web-pages – as possible must be gathered and be constantly

inspected for potential updates, through a procedure known as web-crawling. Once

the raw data are made available, every web-page must go through the phase of content

extraction, i.e. the process of identifying and extracting the useful information in them,

by distinguishing the parts of the web-page that are the most important content-wise.

Subsequently, the extracted content is transformed into a suitable representation, so

that it can be processed by the various IR algorithms that may be in use in the partic-

ular system. Finally, these representations are indexed so that they can be stored and,

subsequently, retrieved in a very efficient way.
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This thesis deals with the phase of content extraction. Not all information available

in web-pages is of equal importance, either to the user who visits it or to the IR system

that needs to index it. Web-pages are filled with a plethora of elements; some exist

for navigational or visual cohesion reasons, others for advertising or copyright pur-

poses, and, obviously, some correspond to the actual content that is intended to be the

center-piece of the page. A search engine, whose indexing component is not capable

of distinguishing between the content section of the page and any other surrounding

elements, will probably have disadvantages in terms of performance accuracy. Con-

sidering every section of the page equally important can mislead the algorithms that

utilize the indexed web-pages. While identifying these web-page section is an easy

task for a human, it is not a trivially automated procedure.

As a consequence of that, accurate techniques, capable of automatically identifying

the regions of content significance, have to be developed in order to aid the proper

indexing of web-pages. This thesis deals with a particular type of content extraction

problem, which is defined in the following section.

1.1 Problem Definition

The task of web-page content extraction can be divided into two families of sub-tasks

depending on the type of web-page that is to be analysed. The first refers to the task

of extracting content information from web-pages that only contain a single content

section. Typically, such web-pages are news stories, articles, pages that contain static

information about organizations or people etc. An example is shown in Fig. 1.2(a).

This type of content extraction will not be the focus of this thesis.

For this project, we will deal with the task of content extraction for multiple content

section web-pages. Pages containing multiple content sections are found in abundance

in the web. Online store product lists, search engine results, video lists, user commu-

nities etc. are only a few examples. An online store’s product list is shown in Fig.

1.2(b).

The task of extracting these sections is not as trivial as its single-content counter-

part. Ideally, given a web-page containing multiple content sections, structured in a

visually similar way, a content extraction component of an IR system should be able

to identify the parts of the web-page where the content sections lie. Additionally, it
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should be able to extract each section as an independent logical unit, part of a group

of similar elements. This type of content extraction task can be viewed as a web-page

segmentation problem.

(a) (b)

Figure 1.2: Examples of (a) single and (b) multiple content web-pages

Our approach is based on a sequential view of web-pages. We expect that, due

to the heavily structured nature of html source code and the visual similarity of the

content sections, significant repetitive patterns should be evident in the sequential rep-

resentation of web-pages. By applying techniques and ideas from the repeat analysis

literature – a novel approach for the web-page segmentation task –, we hope to identify

underlying patterns, in order to extract logical units/sub-sequences that correspond to

the content sections of the page.

1.2 Project Aim and Objectives

Our aim is to build a system, based on machine learning principles, that will utilize

repeat analysis techniques as a mean of identifying content sections of multi-content

web-pages. Due to the novelty of this approach, our main goal is to assess the suitabil-

ity of repeat analysis for such a task.
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In order to accomplish this goal, a number of main objectives were set for this

project. These are:

1. Create an appropriate benchmark dataset to be used for training and evaluating

systems, for the task of segmenting multi-content web-pages. This includes cre-

ating a ground truth for the task.

2. Study the sequence- and repeat- analysis literature in order to identify tools and

techniques that could potentially be suitable for this problem.

3. Build a novel web-page segmentation system by adapting and combining these

tools in order to fit the requirements of such a task.

4. Identify appropriate evaluation metrics to be used as an objective function, for

training and evaluating the performance of the system.

5. Assess the quality of segmentation by thoroughly and critically evaluating the

system.

1.3 Dissertation Structure

This thesis is structure in such a way, that the reader should be able to comprehend the

ideas behind this project and the course of work that was put into it.

In chapter 2, we present an extensive review of the related literature that this project

relates to and was influenced by. The reader will be introduced to the research fields of

sequence segmentation and repeat analysis. In chapter 3 a detailed, top-down descrip-

tion of the system that was built will be given. A formal definition of the necessary

terminology will be followed by a high-level system overview. Then a step by step

presentation of the system’s components will be given. Chapter 4 includes any in-

formation related to the system’s evaluation. A description of the benchmark dataset

will be followed by definitions of evaluation metrics and a thorough set of evaluation

results. Finally, chapter 5 will include a summary of the main conclusions that were

drawn in the process of this project, and any ideas for further extensions and variations

that our work could lead to.





Chapter 2

Related Work

The problem that this dissertation deals with is closely related to a number of research

fields. This happens both in terms of where it draws its motivation from, as well as

regarding previous research work, which it either directly borrows ideas from or is

heavily influenced by.

The task of extracting multiple content segments from web-pages has not been ad-

dressed extensively enough in the context of Information Retrieval (IR) and, in partic-

ular, its indexing process. However, a fair amount of research work regarding the task

of Web-Page Segmentation has been done for purposes not related to IR. Additionally,

Content Extraction for web-wages containing a single content section is a task that has

been addressed and for which well-defined solutions have been proposed and applied

with success as we will see later in this chapter.

The core idea of this project has its roots in a research area that is usually referred

to as Sequence Analysis or Sequence Mining. The most common applications of Se-

quence Mining can be found in the field of bioinformatics, which has been the most

active field regarding sequence-related research for the past few decades.

In this chapter, firstly a small review of various segmentation tasks will be pro-

vided in section 2.1. This aims to help the reader get a sense of the broader context

of sequence segmentation and the variety of domains it is applicable. Secondly, the

previous work that has been done in both IR-driven content extraction, as well as the

more general task of web-page segmentation will be reviewed in section 2.2. Next, a

set of methods and tools from the Sequence Analysis literature which are in some way

related to this project will be presented (section 2.3). Finally, in section 2.4, a small

summary of the most frequently used evaluation metrics for segmentation tasks will

provided.

7
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2.1 Automatic Sequence Segmentation

The abundance of sequentially represented data and the inter-disciplinary need for their

in-depth analysis has led to on-going research efforts in order to effectively extract in-

formation from them. Such data range from discrete representations such as textual or

biological sequences to real-valued time-series of both scientific and industrial interest

(speech, stock-market prices, weather measurements, web-usage click-through infor-

mation etc.). Although varying in type and complexity, all meaningful sequential data

tend not to behave randomly, but instead appear to contain particular patterns either in

terms of distinguishable repetitiveness (e.g. DNA sequences) or as shifting trends of

behaviour (e.g. stock-market, weather measurements).

Automatic sequence segmentation is the task of identifying homogeneous sub-

sequences in sequential data. The nature of the sequence as well as the definition

of homogeneity can vastly differ from one domain to another. This has led to the

development of a large variety of approaches for solving such tasks.

(a) Stock-market time-series 1 (b) Multi-topic text 2

Figure 2.1: Sequence segmentation output from different domains

Figure 2.1 illustrates two examples of sequence segmentation tasks using a sample

output from each. In 2.1(a) the time-series of a stock-market’s index is segmented by

identifying specific patterns in its behaviour. The vertical lines correspond to segment

boundaries. In 2.1(b) a completely different type of sequence segmentation is shown.

A textual sequence – part of a larger news stream – containing adjacent non-related

news stories from different topics is the input of the segmentation task. The goal here

is to identify the positions in the stream – dashed lines – that correspond to topic

boundaries. Ideally, each segment in-between two consecutive boundaries should be

identified as a single, independent news story.
1Figure from lai Chung et al. [2004].
2Figure from Ponte and Croft [1997].



2.2. Web-Page Segmentation 9

It is evident that the research area of sequence segmentation covers a diverse fam-

ily of problems. The field of Bioinformatics – since its emergence over two decades

ago – has been actively leading research efforts in the area of genome sequence anal-

ysis in general and genome sequence segmentation in particular. The most prominent

techniques are based on the statistical modelling of the segmentation task [Braun and

Muller, 1998]. Another common task is the aforementioned topic segmentation. Sim-

ilarly to genome sequence segmentation, the input is discrete valued, although in this

case the definition of homogeneity is usually defined in terms of a language model or

of sentence/paragraph similarity [Ponte and Croft, 1997]. An important example of a

continuous version of such problems is speech segmentation, i.e. the task of segment-

ing audio signal of human speech into words or sentences [Shriberg et al., 2000].

Lastly, it should be noted that sequence segmentation may also act as an interme-

diate step towards solving other tasks. Lavrenko et al. [2000] proposed a novel idea

for predicting stock prices trends; Stock market time-series were segmented in order

to identify trends that were subsequently aligned to concurrent financial news stories.

Features that were most indicative of upcoming price trends were then used to predict

stock prices given unseen financial articles.

In the next section the focus will shift towards the related literature regarding the

type of segmentation task that concerns this dissertation, i.e. web-page segmentation.

2.2 Web-Page Segmentation

As with most segmentation problems, the need for web-page segmentation has its

roots in a variety of computer science fields and applications. With the emergence

of the WWW, it quickly became obvious that effective content extraction techniques

would be useful in order to gather and classify the huge amounts of information avail-

able by distinguishing between important and secondary parts of web-page. Later on,

the establishment of internet access through screen constrained mobile devises (e.g.

PDAs. smartphones, etc.) introduced another utility of web-page segmentation; since

displaying the whole web-page to the user is inconvenient, a way to identify the most

important parts of it became a necessity.
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In sections 2.2.1 and 2.2.2 a review of some prominent approaches to the problem is

provided. In the former, we focus on a well-established method for web-page segmen-

tation in the context of IR-inspired content extraction. In the latter, we briefly present

a number of proposed techniques that approach the task in a more general context.

Finally, in 2.2.3 the limitations of the previously mentioned methods are discussed.

2.2.1 Single Content Section Extraction

As described in the introductory chapter, content extraction is an essential part of ev-

ery web-related IR system. In its simplest form it can be seen as a specific case of a

web-page segmentation task: Given a web-page that consists of a single “useful” con-

tent section surrounded by any less informative elements (navigational links, menus,

advertisements, etc.), the goal is to find 2 appropriate boundaries such that the content

section will lie in-between them, excluding any other element.

Figure 2.2: Examples of single content web-pages

Figure 2.2 illustrates two examples of single content web-pages. In both cases the

page consists of a big block of text (i.e. the news story) as well as other, less relevant

to the actual content, web-page elements. Distinguishing the main body of the article

(marked in red in Fig. 2.2) and using it as the base for any IR- or classification-related
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tasks will provide less misleading information about the page leading to more accurate

results.

Probably the most well-established method for extracting a single content element

from web-pages like the ones shown before is the one proposed by Finn et al. [2001].

Their simple, yet effective approach is based on viewing each web-page’s source code

as a sequence consisting of two kinds of tokens: HTML tag tokens and non-HTML

tokens (i.e. words, numbers etc.). It makes intuitive sense that the part of the source

that corresponds to the main content section will be mainly consisting of words and

very few (if any) HTML tags. This is more obvious if we plot the number of HTML

tags against the overall number of tokens that appear in such web-pages.

Figure 2.3: Tag plateau algorithm visualized3

The low density of html tags in the main content section of the page results in a

flattened area in the plot, also known as the tag plateau. the point a and b mark the

boundaries of the tag plateau which should, ideally, correspond to the start and the end

of the content section.

Although far different from this dissertation’s proposed method, the tag plateau al-

gorithm adopts the sequential view of web-pages which is a key-element of this project

as well. However, the fact that it is limited to only dealing with a single content sec-

tion makes it unsuitable for the task of extracting multiple content sections that we are

dealing with.

3Addison Wesley, 2008 c©.
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2.2.2 General Case: Multiple Sections Segmentation

When not focusing on just a single content section as described in the previous sec-

tion, web-page segmentation takes the more general form of finding a set of boundaries

such that the resulting segments in-between consecutive boundaries are homogeneous

in terms of either visual structure or content (usually the former is indicative of the lat-

ter). The motivation behind this kind of web-page segmentation differs from approach

to approach, although the most prominent ones are duplicate detection for web-mining

purposes, information extraction and identification of important page segments for dis-

playing in screen-space constrained devices.

Figure 2.4: Sample segmentation of VIPS algo-

rithm4

The most popular family of web-

page segmentation approaches fo-

cuses on the visual interpretation

of web-pages in order to identify

coherent blocks that clearly differ

from the rest of the page. The

VIPS algorithm (VIsual-based Page

Segmentation) [Cai et al., 2003] is

an example of such a system. Their

approach was to use heuristic rules

for analysing the Document Object

Model tree (DOM-tree) structure of

a web-page. DOM tree nodes repre-

sent different parts of the web-page,

while the nested nature of the tree al-

lows for groupings of neighbouring

HTML elements. While traversing the DOM tree of a page in a top-down manner,

the VIPS algorithm compares various visual cues between neighbouring blocks of the

page to evaluate the coherence of each traversed sub-tree (e.g. colour difference, text

font, special styling tags etc.). A decision is made at each traversal step about whether

to keep dividing the current sub-tree or not based on its visual coherence. A segmenta-

tion example of the VIPS algorithms is shown in Fig. 2.4. A web-page consisting of a

series of user posts is shown with the corresponding DOM tree structure appearing on

its left and the segmentation output of the VIPS algorithm appearing on its right.

4Figure from Yu et al. [2003].
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Another approach which borrows ideas from computer vision was proposed by

Kohlschütter and Nejdl [2008]. In this case, the density of the textual parts of a web-

page is analysed using vision techniques. Highly dense text portions of the page are

more likely expected to be part of content sections of the page than not. The text

density analysis results in a 1-dimensional representation of the web-page, where sig-

nificant changes in the text density slope should be indicative of a boundary between

neighbouring sections of the page. This technique is a departure from the heuristic ap-

proaches of earlier visual-based methods, as it focuses on modelling the segmentation

task in a principled manner similarly to our approach.

Finally, another group of web-page segmentation approaches are based on graph-

theoretic techniques. In such cases, a web-page is usually represented as a graph whose

nodes are DOM tree elements and the edge weights between them represent how likely

it is for these two nodes to be placed in the same segment or not [Chakrabarti et al.,

2008]. The segmentation problem is then transformed into a graph-based optimization

task where, given a training set of manually segmented web-pages, the goal is to learn

the appropriate edge weights.

2.2.3 Critical Assessment of Existing Segmentation Approaches

The task of web-page segmentation has attracted significant research attention for a

number of different reasons as shown in sections 2.2.1 and 2.2.2. Despite being a

small sample of the related literature, the presented publications are indicative of the

most dominant ideas and approaches on this task. Although often presenting promising

results in the respective evaluation of their work, each approach has certain limitations.

Moreover, the problem area of web-page segmentation lacks of concrete benchmark

datasets and evaluation metrics for unbiased assessment and comparison of different

techniques, which makes it hard to extract meaningful conclusions.

Finn’s tag plateau algorithm for extracting the main text segment of single-content

web-pages (2.2.1) is a well-established method, with satisfactory performance on the

task it was developed for. Unfortunately, as previously discussed, it is only suited for

single-content web-pages and it does not generalize well to the case of multi-content

ones.

Multiple section segmentation methods are needed to overcome tag plateau’s limi-

tation. However, a number of drawbacks can also be identified for such approaches.
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Heuristic-based techniques like the VIPS algorithm are – by nature – not flexible

enough to be used in a wide scale. Coming up with heuristic rules is not a trivial

task and there is no guarantee that they will result in similar performance when tested

on unseen web-pages with different structure like the ones they were developed for.

The always changing trends in the visual structure of web-pages in the WWW makes

matters even worse for such techniques that cannot be dynamically re-trained. On

the contrary, the aim of this dissertation’s project was to develop a robust learning

algorithm that would not rely on any heuristics and should be able to generalize to

unseen web domains.

One major problem of all existing proposed web-page segmentation methods is the

inconsistency regarding their experimental evaluation. Due to the lack of benchmark

datasets specifically designed for this task, the common practice for each new effort is

to train and test their method on newly created datasets.

Additionally – and even more importantly – there are no established and univer-

sally accepted evaluation metrics for this particular type of segmentation. Although a

variety of metrics designed for segmentation problems do exist (see 2.4), none of them

have been adapted or transformed for the particular case of web-pages. Instead, com-

mon evaluation techniques include survey-like evaluations using human judgement for

assessing the quality of segmentation [Cai et al., 2003], implicit evaluation by using

the segmentation output as an input for other applications [Yu et al., 2003] or borrow-

ing evaluation metrics from non-segmentation tasks [Chakrabarti et al., 2008]. This

project aims at both creating a diverse enough dataset for evaluating web-page seg-

mentation methods as well as coming up with proper evaluation measures for such a

task.

Finally, the IR-motivated nature of this project introduces another important fac-

tor. Since the goal is to extract sections of the web-page which correspond to the

actual content information, it is crucial that the segmentation output includes only con-

tent sections and disregards any navigational elements, advertisements, headers/footers

etc.. However, the vast majority of methods in related literature do not try to assess the

content information of the output segments and only focus on segmenting the whole

web-page into its structural blocks. Song et al. [2004] developed a method that, given

a web-page already segmented into structural blocks, would evaluate the importance

of each block in order to identify the ones containing the actual information content.

Our project differs from any previous efforts, as it is designed to only extract those

segments that correspond to content sections.
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2.3 Repeat-related Sequence Mining

As described briefly in Chapter 1, the main idea of this project is to utilize repeat

analysis as the basis of a web-page segmentation method. The term repeat analysis –

also known as self-similarity analysis – refers to a particular family of sequence mining

tasks that deal with analysing a single sequence in order to extract information about

the presence (or absence) of repeated sub-sequences that occur in it.

Figure 2.5: Taxonomy of the major repeat-related problems5

An overview of the most basic sequence-related problems associated with repeat

analysis is provided in Figure 2.5. Tools and algorithms for efficiently extracting these

types of sub-sequences have been and continue to be developed and used in a plethora

of computer science fields. The main research efforts for the majority of these repeat-

related problems have been – at least since the emergence of genomic sequence de-

coding – through the bio-informatics literature [Abouelhoda and Ghanem, 2010]. Ad-

ditionally, repeat analysis has been frequently used in areas such as data compression

– with the Lempel-Ziv-Welch algorithm being a notable example [Welch, 1984] –,

frequent item set mining [Agrawal et al., 1994] etc.

In section 2.3.1 a short description of the subset of repeat-analysis problems that

this project deals with is given. Then, in sections 2.3.2 and 2.3.3 the two repeat-related

tools that are utilized in our proposed methods are presented.

2.3.1 Dispersed, Variable Length Repeats

For the scope of this project we will only focus on a subset of the aforementioned

problem taxonomy, i.e. variable length, exact, dispersed repeats. Brief mentions of

5Figure taken from Abouelhoda and Ghanem [2010].
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approximate repeats and how they could also be utilized will also appear. In this sec-

tion we will provide some simple definitions on these types of repeats. More formal

definitions related to sequences and repeats are given in Section 3.1.1.

A repeated pair is any pair of sub-sequences that occur in a single sequence that

are either identical (exact repeat) or slightly altered by a few edit operations (approxi-

mate repeat). The dispersed property means that the two sub-sequences that form the

repeated pair are not required to be adjacent. Finally, the variable length property in-

dicates that the desired length of the repeat is not known beforehand. The most usual

case of variable length repeats are maximal repeats, i.e. repeats that cannot be extended

any further in either direction. Figure 2.6 shows both a maximal exact repeat (a), as

well as an approximate one (b), where a character insertion (blue ‘a’) and a character

replacement (red ‘t’) has occurred.

g g c g a g c t c a g a g c g

(a) Maximal Exact Repeat

g g c g a g c t c a g a a t c g

(b) Approximate Repeat

Figure 2.6: Example of exact and approximate, dispersed repeats

2.3.2 Dot-Plots

Dot-plots are one of the oldest tools that have been used for sequence mining and for

repeat-related problems in particular. Initially developed for genome sequence analysis

[Gibbs and Mcintyre, 1970], dot-plots are a special type of recurrence plots. They

can be used both for extracting intra-sequence repetitions as well as for identifying

similarities between two sequences by plotting a sequence against itself or against a

second sequence respectively.

Their construction is rather straightforward. By plotting a sequence against it-

self in its original order (in the case of intra-sequence analysis) we end up with a

2-dimensional, square grid where each cell corresponds to a pair of sequence positions

(i, j). If sequence characters in positions i and j are identical then a dot is placed in the

cell, otherwise it is left blank. This creates visual patterns that can be easily interpreted

by humans or used to automatically extract self-similarity information.
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Figure 2.7: Examples of synthesized Dot-Plots6

Obviously the main diagonal of a self-similarity dot-plot is always an “unbroken”

line since each character in position i matches itself. If no repetitions are evident in

the sequence then the rest of the dot-plot is going to be blank (2.7 a). Exact repeated

sub-strings appear as continuous lines off the main diagonal (2.7 b). If a repeat is ap-

proximate then the corresponding off-diagonal line is “broken” (2.7 c). Other interest-

ing patterns can also appear: square regions in the case of single character repetitions

(2.7 d, f), repetitions with intervening characters (2.7 e), etc. It is easily perceived that

self-similarity dot-plots as the ones shown above are always going to be symmetric

with respect to the main diagonal.

The same type of patterns will also be evident when analysing similarities between

two sequences. However, it is obvious that in this case the dot-plot will neither be

square (except if the sequences have equal lengths), nor symmetric and will not have

an “unbroken” main diagonal. In the scope of our project, dot-plots will only be used

for self-similarity analysis.

Dot-Plots have been used in genomic sequence analysis more often than in any

other research field. Since their emergence [Gibbs and Mcintyre, 1970] they have

been utilized for DNA, RNA and protein mining using increasingly sophisticated algo-

6Figure taken from Church and Helfman [1993].
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rithms and representation variations [Brown et al., 1995; Dunham et al., 1999; Maizel

and Lenk, 1981]. Althouth their main application lays in genetics, the context inde-

pendent nature of dot-plots has made them useful in other sequence-related tasks as

well. They allow the investigation of interesting patterns in any text or chronological

event regardless of scientific domain. Such applications include, among others, soft-

ware development redundancy identification [Church and Helfman, 1993] and version

maintenance [Helfman, 1996], web-site evolutionary modification tracking [Bernstein

et al., 1991], plagiarism detection [Helfman, 1994] etc.

2.3.3 Suffix Trees, Suffix Arrays and Enhanced Suffix Arrays

It could be argued that the most important and commonly used tool in string processing

is the suffix tree. The suffix tree is a data structure that can be used to solve numer-

ous sequence related problems with optimal time complexity in many cases [Gusfield,

1997].

Its importance is particularly obvious in the case of very large sequences whose

analysis would otherwise be extremely time consuming. Due to this fact they have

been extensively used to analyse whole genomes which in many cases can have lengths

up to a few billion elements. Suffix trees are tree-like index structures that can be built

in linear time with respect to the length of the sequence for which they are constructed

and which, when traversed in the proper way, can provide efficient solutions to many

repeat-related tasks. A summary of these tasks paired with the type of tree traversal

they require is shown in Figure 2.8.

Figure 2.8: Suffix Trees/Arrays applications and the traversal types they

require7

7Figure taken from Gusfield [1997].
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Regardless of their prominent role in the sequence processing literature, suffix

trees’ use in actual implementations is very limited due to two main factors. Firstly,

although they require O(n) space complexity, their actual space consumption is at least

20 bytes per sequence element, which is unacceptable for genomic scale tasks [Kurtz,

1999]. Secondly, they suffer from poor memory locality which makes their perfor-

mance poor despite their asymptotically linear time complexity [Abouelhoda et al.,

2004; Delcher et al., 1999].

A simple and significantly more space efficient alternative to suffix trees is the

Suffix Array. Introduced by Manber and Myers [1993], suffix arrays can be stored using

only 4 bytes per sequence element and can be constructed in linear time [Kim et al.,

2003]. However, the initial version of the suffix array could not achieve the optimal

time efficiency of suffix trees for some repeat-related tasks. Almost one decade later,

Abouelhoda et al. [2002] extended the suffix array data structure and introduced the

Enhanced Suffix Array, which has since been proven able to solve any repeat-related

task at least as efficiently as suffix trees do, by using only up to 6 bytes per sequence

element [Abouelhoda et al., 2004].

More information on the specifications of enhanced suffix arrays, the algorithms

that utilize them and how they were used in the scope of this project will be given in

section 3.3.2.

2.4 Evaluating Segmentation Tasks

The unique nature of segmentation problems, as the ones discussed in the previous sec-

tions, makes the experimental evaluation of segmentation methods a non-trivial task.

Even in the case where a ground-truth dataset denoting the reference segmentation

does exist, it is hard to come up with a metric that properly accounts for how good a

hypothesised segmentation is, while being tolerant enough to near misses.

Common evaluation metrics used throughout the machine learning research area

are usually not applicable. Although many approaches have been proposed in various

related domains, the most prominent and frequently used ones belong to a family of

segmentation metrics that are referred to as window-based metrics [Beeferman et al.,

1999; Niekrasz and Moore, 2010; Pevzner and Hearst, 2002].

The main idea behind this family of metrics is that, given a reference and a hypoth-

esized segmentation of a sequence with N potential segmentation positions, a sliding

window of length k is used which results in N− k+ 1 slices of the sequence. Then
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the reference and hypothesized segmentations are compared either in terms of exis-

tence/absence [Beeferman et al., 1999] or in terms of the exact number of boundaries

within each slice [Pevzner and Hearst, 2002]. The resulting number usually corre-

sponds to the proportion of slices where the compared segmentations disagreed. These

metrics have the advantage of introducing a near-miss tolerance factor in terms of the

window length k.

More information regarding the evaluation metrics that will be used in this project

are given in section 4.2.2.



Chapter 3

Methodology

This chapter provides a detailed description of the system that was built for this project.

The methods that were designed and implemented in order to approach the problem

of web-page segmentation from a content-extraction perspective will be given in a

top-down manner. The solution will firstly be described in a high-level fashion by

providing a full system overview and briefly commenting on the purpose of the com-

ponents that constitute its operational phases. Subsequently, a detailed description of

each phase will be provided while discussing the ideas that resulted in the particular

design decision in favour of others. Some of the components will be clearly related to

previous work described in chapter 2. This is because they are influenced by existing

techniques or because they use tools off-the-shelf.

The outline of the chapter is the following: In Section 3.1 some necessary def-

initions and notation will be provided both for sequences in general as well as for

web-pages as sequentially represented data. Section 3.2 contains a high-level descrip-

tion of the system and its main phases. In Section 3.3 the reader will be guided through

the components from which each phase is built.

3.1 Preliminaries

It should be clear by now that most aspects of this project are closely related to

sequence-analysis. In order to establish a common vocabulary that will be used through-

out the rest of this thesis, this section’s purpose is to formally define all necessary

sequence terminology both in general terms (3.1.1) and specifically in relation to web-

pages (3.1.2). Section 3.1.3 formally defines the type of sequence segmentation that

this system deals with.

21
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3.1.1 Sequence Terminology and Notation

The following definitions are commonly used in the sequence analysis literature. In

particular, most of the terminology provided here is borrowed from the sequence min-

ing survey of Abouelhoda and Ghanem [2010].

Sequences

Let Σ be an ordered alphabet of size |Σ|, consisting of a fixed number of unique, non-

divisible elements1. We define S as a sequence of elements over Σ and its length |S|= n.

We write S[i] to denote the element of sequence S at position i, for 0 ≤ i < n 2. For

0≤ i≤ j < n, we define the position pair (i, j) that refers to the starting position i and

ending position j of a sub-sequence of S. The actual content of this sub-sequence is

denoted as S[i.. j]. Finally, we define two special kinds of sub-sequences. The sub-

sequence starting at the 0-th and ending at the i-th element of S is called a prefix of

S and is denoted as S[0..i]. Similarly, the sub-sequence of S starting at position i and

ending at the last element of S is called the i-th suffix of S and is denoted as S[i..n−1],

or using the more convenient notation S(i).

Exact Repeats

Given a sequence S, a pair of positions R = 〈(i1, j1),(i2, j2)〉 is a repeated pair if

and only if (i1, j1) 6= (i2, j2) and S[i1.. j1] = S[i2.. j2]. The length of repeated pair R

is j1− i1 + 1. R is called left maximal if S[i1− 1] 6= S[i2− 1] and right maximal if

S[ j1 + 1] 6= S[ j2 + 1]. R is called maximal if it is both left and right maximal. In

simpler terms, a repeated pair is called maximal if and only if it cannot be extended

either to the left or to the right while still corresponding to identical sub-sequences.

The sub-sequence ω is a (maximal) repeat if there exists a (maximal) repeated pair

〈(i1, j1),(i2, j2)〉 such that ω = S[i1.. j1] = S[i2.. j2]3. Finally, a special type of maximal

repeats are supermaximal repeats. A maximal repeat ω is called supermaximal if it

never occurs as a sub-sequence of another maximal repeat.

1In the context of sequences, an element that is part of an alphabet might not necessarily be of
unit length. Not to be confused with the term character defined as a single text unit (alphanumerical,
whitespace or punctuation symbol). Will be made clearer in section 3.1.2.

2The sequence indexing notation is zero-based, meaning that the starting element of sequence S is at
position 0 and its last element is at position n−1.

3In other words, the term repeated pair refers to the positions of the identical sub-sequences in S,
whereas the term repeat refers to the actual content of the repeated sub-sequence.
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Figure 3.1 illustrates the above definitions. S = “gagctagagcg” is a sequence of

length n = 11 which is defined over the alphabet Σ = {a,c,g, t}.

• Three sub-sequences are shown in 3.1(a): the sub-sequence S[2..6] (gray), the

prefix S[0..4] (purple) and the suffix S(4) (light blue).

• The three maximal repeated pairs of S (with length > 1) are illustrated in 3.1(b):

〈(0,3),(6,9)〉, 〈(1,2),(5,6)〉 and 〈(5,6),(7,8)〉. Note that repeated pair 〈(1,2),(7,8)〉
is not maximal since it can be extended in both directions.

• The only supermaximal repeated pair of S is 〈(0,3),(6,9)〉 shown in 3.1(c).

Since the maximal repeat ω = ‘ag’ is a sub-sequence of maximal repeat u =

‘gagc’, 〈(1,2),(5,6)〉 and 〈(5,6),(7,8)〉 are not supermaximal repeated pairs.

0 1 2 3 4 5 6 7 8 9 10

S: g a g c t a g a g c g

S: g a g c t a g a g c g

S: g a g c t a g a g c g

(a) A sub-sequence, a prefix and a suffix

0 1 2 3 4 5 6 7 8 9 10

S: g atg c t a gta g c g

S: g atg c t atg a g c g

S: g a g c t atg atg c g

(b) Maximal Repeats

S: g a g c t a g a g c g

0 1 2 3 4 5 6 7 8 9 10

S: g atg c t a g a g c g

S: g a g c t a g a g c g

(c) Supermaximal Repeat

Figure 3.1: Examples of sub-sequences, maximal and supermaximal repeats

of sequence S = “gagctagagcg”4

4Idea for figure borrowed from Abouelhoda and Ghanem [2010]
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3.1.2 Sequential Representation of Web-Pages

Web-pages are, in reality, nothing more than simple text files containing mainly HTML

source code. Their unique structure, however, allows them to be thought of and rep-

resented in more interesting ways. In particular it makes intuitive sense to think of

web-pages both using their DOM-Tree representation, as well as using the more ab-

stract view of them as a sequence of elements.

The DOM-Tree view of a web-page makes its illustration easier for a human to un-

derstand and allows for convenient processing of their nested structure in an automated

manner. In the scope of this project, however, we will not consider the DOM-Tree rep-

resentation of web-pages.

On the other hand, the sequential view of a web-page – in the way sequences were

defined in section 3.1.1 – allows for increased level of flexibility when it comes to

what is considered as a “unique and non-divisible” element4. In the same way that

a plain textual object (e.g. a book) can be seen as a sequence of letters and symbols,

as well as a sequence of words, sentences, paragraphs etc., the structure of web-pages

allows for various levels of sequential abstraction based on the preferred tokenization

method. In this context, tokenization is defined as the process of breaking up text into

characters, words, phrases, or any other meaningful elements called tokens5. Different

tokenization policies will result in different sequences derived from a single web-page.

In its most straightforward sequential form, a web-page W can be represented as

a sequence of characters Schar over the character alphabet Σchar. Σchar consists of any

unit-length alphanumeric, white-space or punctuation character found in the page’s

source code. From now on, this type of sequential representations will be referred to

as character-based sequences.

Another possible tokenization policy is based on the fact that web-pages consist

of two types of multi-character tokens: html tags and whitespace-separated, non-tag

words6 in-between of those tags. This tokenization policy results in a family of sequen-

tial representations, which will be referred to as token-based sequences. Depending on

the alphabet used, different resulting sequences can be derived.

4See 3.1.1: Sequences
5http://en.wikipedia.org/wiki/Tokenization
6In this context, a “word” does not refer to the linguistic definition of a word but rather to any

sequence of non-whitespace alphanumeric or symbol character.
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The most basic token-based sequence type is the one already described in section

2.2.1: A sequence Sbin over the binary alphabet Σbin = {0,1} where Sbin[i] = 1 if the

i-th token of the web-page is an html tag and Sbin[i] = 0 otherwise.

For this project, however, we will only consider more sophisticated token-based

sequence types. In particular, we will define two such representations: The first will be

referred to as simple token-based sequences and the second as extended token-based

sequences.

Given a web-page’s source we define its simple token-based sequence representa-

tion Ssimple over the alphabet Σsimple as follows: Let T be the set of unique html tags

found in the web-page without taking into account the various parameters that each

tag may have. Additionally, let wspan be a special element denoting an unbroken span

of consecutive whitespace-separated non-tag words. The alphabet of the simple token-

based sequence Ssimple is then defined as Σsimple = T ∪{wspan}. Note that due to the

definition of wspan, which can correspond to an arbitrary number of consecutive non-

tag words, it is impossible to find two adjacent elements of Ssimple that are both equal

to wspan, i.e. if Ssimple[i] = wspan then Ssimple[i+1] 6= wspan for 0≤ i < n−1.

A variation of this representation is the extended token-based sequence Sext over

the alphabet Σext that is defined as follows: Again, let T be the set of unique html tags

found in the web-page without taking into account the various parameters that each tag

may have. Additionally, let P be the set of html tag parameters found in the web-page

without taking into account the actual values of each parameter. Finally, let w be a

special element denoting a single non-tag word. The alphabet of the extended token-

based sequence Sext is then defined as Σext = T ∪P∪{w}. In contrast to the case of

Ssimple, in Sext it is possible to have two or more adjacent elements all equal to w, since

w only corresponds to a single non-tag word.

The process of constructing a sequential representation of any type from a web-

page’s source code will be referred to as sequence translation. The construction of

character-based sequences is trivial since no actual processing takes place. Therefore,

in the rest of the dissertation, character-based sequences will be thought of as having

undergone no sequence translation. On the other hand, token-based sequences are the

result of simple and extended sequence translation respectively.

Obviously, there are numerous other tokenization policies that could be considered.

However, in the scope of this project only the 3 mentioned above will be used and

assessed as they are expected to be representative enough for our purposes. More

information regarding the translation process will be given in Section 3.3.1.
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3.1.3 Defining Interspersed Segmentation

The most common way to formally define a sequence segmentation task is in terms

of a discourse [Niekrasz and Moore, 2010]. Each sequence S of length n, which is

to be segmented, is associated with an M-length array 〈p1, p2, . . . , pM〉 of potential

boundary positions, which specify M + 1 adjacent non-divisible elements

〈[0, p1), [p1, p2), . . . , [pM,n]〉.
A segmentation X is defined as a sequence of Boolean variables 〈X1,X2, . . . ,XM〉,

such that Xm = 1 if there is a boundary at pm, and Xm = 0 otherwise.

However, in our task the segments to be extracted are not guaranteed to be adjacent

– but may as well be –, since irrelevant web-page sections may or may not exist in-

between two content segments. Additionally, they will definitely not cover the whole

web-page sequence.

In order to address the unsuitability of the discourse segmentation definition, two

types of boundaries are defined for our segmentation problem: opening and closing

ones. In this case, a segment is defined as the sub-sequence in-between an opening and

a closing boundary. We will now formally define this type of segmentation, which will

be referred to as interspersed segmentation.

In the same way as before, let the sequence S of length n be associated with an

M-length array 〈p1, p2, . . . , pM〉 of potential boundary positions, which specify M+1

adjacent non-divisible elements 〈[0, p1), [p1, p2), . . . , [pM,n]〉.
An interspersed segmentation Ẍ is defined as a sequence of paired Boolean vari-

ables 〈Ẍ1, Ẍ2, . . . , ẌM〉, such that:

Ẍm =


(1,0) if there is an opening boundary at pm

(0,1) if there is a closing boundary at pm

(1,1) if there is an opening and a closing boundary at pm

(0,0) if there is no boundary at pm

An illustration is provided in Fig. 3.2:

S: g atg c | t a g | atg | gta t

(a)

S: g[ atg c ]t[ a gta g ][ gta ]t

(b)

Figure 3.2: Examples of (a) discourse and (b) interspersed segmentations



3.2. System Overview 27

3.2 System Overview

The main aim of this project, as it has been described in the introductory chapter of

this thesis, is to utilize the sequential nature of web-pages in order to analyse the pres-

ence of repeated patterns that will hopefully correspond to segments of the web-page

exhibiting structural similarities while containing significant content.

By carefully reading the above description, one can identify the 4 main phases

that should constitute the backbone of the system’s design. Given the initial input – a

single web-page – these 4 processing steps should work as a pipeline and produce a

final output of the predicted web-page segments that were extracted. In general terms,

these steps are:

1. Sequence Translation: Transform the raw source of the input web-page into a

sequential representation.

2. Repeat Extraction: Given the constructed sequence, extract repeated sub-sequences

that are considered significant enough.

3. Repeat Density Analysis: Analyse the extracted repeats in order to identify

regions exhibiting high repetitiveness.

4. Segments Extraction: Transform these regions into actual segments that form

the systems segmentation prediction.

Full
Corpus

Single 
WebPage

Sequence 
Translation

Repeat
Extraction

Repeat Density
Analysis

Segments
Extraction

Ground Truth
Segmentation

Segmentation
Evaluation

 

Experimental
Results

Figure 3.3: Full system overview illustrating both processing (yellow) and

evaluation (gray) components
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Figure 3.3 provides an overview of the full system design. The system’s input is

a single web-page which is part of a large corpus of web-pages. The main system

pipeline is illustrated by the 4 basic system components shown in yellow colour. Each

of these 4 components will be described in detail in Section 3.3. The components

illustrated in gray colour correspond to the evaluation phase of the system that will be

discussed in Chapter 4.

3.3 Components Description

In this section a step-by-step description of the 4 main components constituting our

system is provided. Sub-sections 3.3.1-3.3.4 are intended to provide details on the

design decisions for each component, the reasons that resulted in these decisions, major

variations and alternative approaches (if any) that were implemented for each phase,

as well as the most important parameters that are expected to affect the overall system

performance.

3.3.1 Sequence Translation

Single 
WebPage

Sequence 
Translation

Repeat
Extraction

Repeat Density
Analysis

Segments
Extraction

The sequential representation of web-pages was discussed in detail in section 3.1.2

where the formal definitions and descriptions of 3 types of sequence representations

were provided. Summarizing, the representation types considered in this project are:

• Character-based sequences (no translation): Each character of the web-page

source is translated into a single sequence element.

• Simple token-based sequences (simple translation): Each html tag of the web-

page source is translated into a single sequence element. Tag parameters are

disregarded. Consecutive content words in-between tags are translated into a

single element.

• Extended token-based sequences (extended translation): Each html tag or tag

parameter of the web-page is translated into a single sequence element. Values of

tag parameters are disregarded. Each content word in between tags is translated

into a single element.



3.3. Components Description 29

The sequence translation component is responsible for transforming the raw in-

put (page’s source) into a sequence of elements suitable for the repeat analysis steps

that follow. The translation process is rather straightforward. In the case of character-

based sequence representation, the input web-page source remains intact and will sub-

sequently be treated as a simple sequence of characters. In the case of the 2 token-

based sequence representations the input web-page source is tokenized appropriately

using regular expressions. The resulting sequences are defined over a newly created

alphabet. Additionally, for each element, a pair of starting and ending positions that

correspond to its boundaries in the non-translated, character-based sequence are also

outputted.

Figures 3.4-3.6 illustrate the process for all 3 representations. A “toy” web-page

source (black text) is used to show how each translation method produces a different

sequence representation. The resulting sequences are coloured in such a way that each

element has a different colour from its neighbours.

In Figure 3.4 the web-page undergoes no translation. A sequence Schar, with

|Schar| = 66 (equal to the source’s length) and a corresponding alphabet

Σchar = {c : ∀ c ∈ Schar} is constructed.

<html><body><a href="url" id="link">Hello World!</a></body></html>

<html><body><athref="url"tid="link">HellotWorld!</a></body></html>

Figure 3.4: Character-based sequence representation

In Figure 3.5 the web-page undergoes simple token-based translation and is trans-

formed into a sequence Ssimple, with |Ssimple| = 7 and a corresponding alphabet

Σsimple = {<html>, <body>, <a>, </a>, </body>, </html>, wspan}. The starting and end-

ing position boundaries that each element of Ssimple maps to in the character-based

sequence are also shown.
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<html><body><a href="url" id="link">Hello World!</a></body></html>

Sequence: <html>|<body>| <a> |w span | </a> |</body>|</html>

Positions: 0 5|6 11|12 35|36 47|48 51|52 58|59 65

Figure 3.5: Simple token-based sequence representation

In Figure 3.6 the web-page undergoes extended token-based translation and is

transformed into a sequence Sext , with |Sext |= 10 and a corresponding alphabet Σext =

{<html>, <body>, <a>, </a>, </body>, </html>, href, id, w}. The starting and ending po-

sition boundaries that each element of Sext maps to in the character-based sequence are

also shown.

<html><body><a href="url" id="link">Hello World!</a></body></html>

Sequence: <html>|<body>| <a> | href | id | w | w | </a> |</body>|</html>

Positions: 0 5|6 11|12 14|15 25|26 35|36 41|42 47|48 51|52 58|59 65

Figure 3.6: Extended token-based sequence representation

The differences between the simple and the extended translation should now be

more clear. The resulting simple token-based sequence (3.5) has strictly one sequence

element per html tag (even in the case of the anchor tag <a . . .> which has 2 parame-

ters) and only one wspan element corresponding to the “Hello World!” text. In contrast,

the resulting extended token-based sequence (3.6) breaks up the anchor tag into 3 ele-

ments: 1 for the actual tag and 2 for its parameters. Additionally the “Hello World!”

text now corresponds to 2 w elements, one for each word.



3.3. Components Description 31

3.3.2 Repeat Extraction
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It has already been mentioned many times that the main aim of this project is to as-

sess whether repeat analysis techniques are a suitable tool for identifying structurally

similar sections of web-pages corresponding to their content segments. The repeat

extraction phase of the system acts as the first step towards this direction.

The sequence translation phase of the system, described above, transforms the web-

page’s source into a sequence of elements which subsequently becomes the input of

the current phase. The type of sequence translation that was used in that step will not

be a factor in the repeat extraction phase at all. It will, however, be referred to again in

the next operational phase (3.3.3: repeat density analysis).

 or  or 
sequence  

DotPlot

Enhanced
Suffix
Array

   repeats

Repeat Extraction

positions positions

Figure 3.7: High-level design of the repeat extraction phase7

The repeat extraction phase consists of two major components, which act as alter-

native ways of extracting repeat information from the inputted sequence (Fig. 3.7).

Dot-Plots and Enhanced Suffix Arrays – both mentioned in Section 2.3 – are well es-

tablished repeat analysis tools. Assessing their suitability to act as the backbone com-

ponent for the task of web-page segmentation is the most crucial part of this thesis. In

particular, it is expected that the more sophisticated enhanced suffix arrays will pro-

vide more fine-grained repeat information compared to the noise-sensitive dot-plots,

resulting in better performance (see Chapter 4). Sections 3.3.2.1 and 3.3.2.2 provide

descriptions of the two components.
7The gray-coloured line arrow labelled as “positions” refers to the position boundaries outputted by

the sequence translation component in the case of token-based translation (see 3.3.1). Although not used
in the current phase they are necessary for the repeat density analysis component (3.3.3).



32 Chapter 3. Methodology

3.3.2.1 Utilizing Simple Dot-Plots

The dot-plot is an easy to implement repeat analysis tool. Additionally, it provides a

visually interpretable output that can be assessed both by humans and programmati-

cally. On the contrary, dot-plots are known to suffer in cases were the sequences to

be analysed tend to be noisy, i.e. containing non-significant repeated characters purely

by chance. However, their ease of use makes them a good initial option for assessing

whether a sequence has an underlying structure in terms of loosely repeated patterns,

which is the type of structure we expect from sequential representations of web-pages

to have.

The extraction of repeat information of a sequence from a dot-plot was discussed in

Section 2.3.2. It can now be described more formally based on the sequence definitions

of Section 3.1. Let S be the input sequence of the repeat extraction phase and |S| = n

be its length. By sliding the sequence S against itself we create a total number of

2n− 1 possible alignments. For each alignment a number of elements might match

in the sliding sequences. Each such match corresponds to a single repeated element c

appearing in the sequence at positions ic and jc8. This process makes sense intuitively

when illustrated by visualizing the actual dot-plot. A visualized nxn sized dot-plot has

a total number of 2n− 1 diagonals, with each diagonal being the visual equivalent of

an alignment derived from the sliding sequences. Position pairs of matching characters

are marked with a dot in the corresponding coordinates of the plot. Obviously, the main

diagonal will always be an unbroken line of dots and the dot-plot will be symmetric

with respect to it.

At this point, it should be clarified that in its essence, a sequence’s dot-plot refers

to the set of position pairs corresponding to repeated elements in the sequence and not
its visualized representation. However, the graphical illustration of it as a recurrence-

type plot makes it visually interpretable and easier to understand. Although the actual

output of the system’s dot-plot component is in terms of position pairs, we will consis-

tently use its visual representation, both for this component, as well as for the enhanced

suffix array component mentioned in the following section.

The example provided in Fig. 3.8 illustrates the construction of a dot-plot. A

character-based sequence of a toy web-page is used (and will be used throughout the

chapter for clarification purposes). In the upper part of the figure one of the possible

alignments of the sequence with itself is shown. In the current alignment, there exist 4

8The formal definition of the repeated pair positions would be R = 〈(ic, ic),( jc, jc)〉. For simplicity
reasons we only refer to the pair using ic and jc since it is unit-length.
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matched elements (coloured red). Their corresponding dots in the plot are also shown

in red colour. Note that there are 8 red points, 4 in each side of the main diagonal in

symmetrical fashion. Each group of 4 red dots are part of the same diagonal since they

come from a single alignment. The rest of the plot is constructed similarly.

S: <html><h1><p>example</p></html>

S: <html><h1><p>example</p></html>
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Figure 3.8: Example of dot-plot visualization from a toy page sequence

Dots appearing at neighbouring coordinates in the same diagonal indicate that more

than one consecutive elements are repeated. For example the subsequence ω= “html>”

which appears at positions R = 〈(1,5),(26,30)〉 can be seen as a 5-dot long diagonal

near the upper right and bottom left corner of the dot-plot. Such repeated patterns are

easily identified by human inspection but dot-plots provide no efficient way of extract-

ing them as one single repeated sub-sequence. In addition, their quadratic search space

makes greedy approaches infeasible.

This inability to efficiently distinguish between significant repeated sub-sequences

and short – or even unit-length – ones, whose existence is probably irrelevant to the

task they’re applied to, is the most prominent limitation of dot-plots. In the following

section we describe how this limitation can be addressed by using a more sophisticated

repeat analysis tool, the enhanced suffix array.
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3.3.2.2 Utilizing Enhanced Suffix Arrays

Suffix arrays and the more sophisticated extension, the enhanced suffix arrays, are

data structures of huge importance in sequence and repeat analysis. They allows for

extremely efficient solutions – both time- and space-wise – to numerous sequence re-

lated problems and are in many cases the core component of complex sequence mining

systems (e.g. the genome analysis REPuter system [Kurtz et al., 2001]). They lie in

the opposite side of dot-plots with regards to the trade-off between intuitive simplicity

and performance. They provide a highly complex but more usable and flexible method

of extracting repeat information.

The specific details regarding their structure, and the algorithms that utilize them

are not in the scope of this project9. Instead, a high-level description of their capabili-

ties is given below.

In terms of input and output the (enhanced) suffix array component works in the

same way as the dot-plot, which makes their use as alternatives for the phase of repeat

extraction very convenient. The input sequence is used to construct the main building

blocks of the data structure. These building blocks are essentially a number of arrays

that provide – among others – easy access to the sequence’s suffixes in lexicographical

order, as well as information about these suffixes’ longest common prefixes. Efficient

algorithms are able to utilize this information in order to extract repeats. An over-

simplified example is shown below to give some insight of the main idea behind suffix

arrays.

S = <html><h1><p>example</p></html>

S(27) = html>

S(1) = html><h1><p>example</p></html>

⇓

Longest Common Prefix(S(27),S(1)) = html>

Figure 3.9: Simplified example of repeat identification using suffix and prefix

information

9See the paper that introduced the Enhanced Suffix Array [Abouelhoda et al., 2004] for full details.
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Although simpler from the actual repeat extraction algorithms, Fig. 3.9 shows how

the longest common prefix of lexicographically ordered suffixes S(27) and S(1) are in

fact repeated sub-sequences of the original sequence S.

An important advantage of enhanced suffix arrays in comparison to simple dot-

plots is their ability to extract whole repeated sub-sequences at once, instead of the

single repeated elements that are outputted by dot-plots. More specifically, given an

enhanced suffix array constructed from an input sequence, there exist algorithms for

extracting the sequence’s maximal and/or supermaximal repeated pairs. Even more im-

portantly, it is trivial to threshold the extracted (super)maximal repeats both in terms of

their length as well as of the number of times that each repeat is found in the sequence.

This acts as a major improvement over the naive repeat extraction method of dot-plots,

since one can now specify how significant a repeat should be in order to be extracted.

Too short or not frequent enough repeats can be ignored by setting these two thresholds

which will from now on be referred to as minlen and minrep parameters respectively.

In order to make the effect of these parameters clearer, a series of example figures

will be used. For this purpose we will once again use the toy character-based sequence

used previously.
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Figure 3.10: Example output of the dotplot component with varying dot

colours illustrating repeat significance
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Firstly, the output of the dot-plot component, which was also illustrated in section

3.3.2.1 is shown below in Fig. 3.10. As noted earlier, diagonally consecutive dots

indicate repeated sub-sequences of length greater than 1. For clarity reasons, the dots

in Fig. 3.10 are coloured based on the length of the repeats they correspond to. Single

repeated elements are coloured in white (as is the main diagonal since it is redundant),

repeats of length 2 are coloured in black and the only repeated pair of length 5 is

coloured in cyan. In contrast to the inability of the dot-plot component, the enhanced

suffix array component is capable of extracting only the portion of these repeats that

satisfy the minimum length and minimum repetitions parameters.

Suppose that only repeats of length greater than or equal to 2 elements need to be

extracted. By setting the minimum length parameter to minlen = 2 and the minimum

repetitions parameter to its default value minrep = 2, only the repeats shown in Fig.

3.11(a) are extracted. Similarly, by applying an even more strict threshold for the

minimum length of extracted repeats (minlen = 5), only one repeated pair is extracted

3.11(b).

minlen = 2 — minrep = 2
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Figure 3.11: Length-thresholded repeat extraction using enhanced suffix ar-

rays

It is similarly simple to threshold the number of times each extracted repeat is found

in the original sequence by setting the minimum repetitions parameter to minrep = 3,

which requires for a sub-sequence to be repeated a minimum of 3 times in order to be
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extracted. Once again a minlen = 2 is required. As illustrated in Fig. 3.12(a) only the

sub-sequence “><” appears 3 times in the original sequence. If, however, the length

parameter is set to minlen = 5 no repeats exist meets the required thresholds (Fig.

3.12(a)).
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Figure 3.12: Length- and frequency-thresholded repeat extraction using en-

hanced suffix arrays

As with the dot-plot component’s output, the enhanced suffix array component –

given the appropriate parameters – outputs a list of repeated pairs R = 〈(i1, j1),(i2, j2)〉
for each repeated sub-sequence. The output is illustrated in a similar way dot-plots do

in order to be more easily interpreted. By examining the aforementioned examples it

should be clear that the enhanced suffix array component has the appropriate mecha-

nisms to cope with noisy sequences, while the dot-plot component does not. Chapter 4

will focus – among others – to assessing the difference between the two components.
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3.3.3 Repeat Density Analysis

Single 
WebPage

Sequence 
Translation

Repeat
Extraction

Repeat Density
Analysis

Segments
Extraction

The repeat extraction phase of the system was responsible for extracting and outputting

repeated pairs from the input sequence representation of a web-page. Obviously re-

peats of arbitrary length and frequency exist in abundance in long and complicated

sequences of elements as the ones our system dealing with. The main idea on which

this web-page segmentation system is based, is identifying regions of the web-page se-

quence representation that exhibit a high repetitiveness rate. In this section, the repeat

density analysis component, which is responsible for this task, will be described.

Each repeated pair R = 〈(i1, j1),(i2, j2)〉 extracted from the previous phase can be

interpreted as follows: all sequence elements with positions p : p ∈ (i1.. j2)∪ (i1.. j2)
are part of a repeat. Given a list of repeated pairs, each element S[p] of the sequence

will be part of 0 or more repeats. Due to the numerous repeats that are evident in each

sequence, the number of repeats that each element is a part of is not expected to follow

a smooth enough distribution, in order to be analysed in an automated way. Our goal

is to deal with the erratic behaviour of repeat distribution by applying a smoothing

technique to this repeat distribution.

More specifically, the repeat density analysis phase can be broken down to the

three following steps:

1. Gather repeat information for all elements in the sequence. This is done using

the outputted repeated pairs of the repeat extraction phase.

2. Summarize the number of repeats at each position, i.e. for each position in the

sequence count the number of repeats that it is a part of. This will result in a

histogram-like summary where each element of the sequence is associated with

its repeat count.

3. Smooth the resulting histogram in order to get a continuous distribution indicat-

ing the estimated density of repetitions for the whole sequence.
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The first two steps are trivial. The outputted list of repeated pairs from the previous

phase can be directly used for this purpose. In terms of a dot-plot representation,

the number of repeats that each element is a part of can be identified by counting

the amount of dots that appear on each row of the plot. This way, the histogram-

like summary of the number of repeats per position is obtained by simply adding the

number of dots in each row. This can be done regardless of whether the extracted

repeats where generated by the dot-plot or by the enhanced suffix array component.

Regarding the third step, in order to smooth this distribution of repeat counts, a

kernel-based density estimation (KDE) technique named kernel smoothing is used.

Kernel smoothing is a non-parametric method where a real-valued function f is esti-

mated using noisy observations 10. This results in a real-valued repeat density estima-

tion that is more suitable for further analysis in the segments extraction phase of the

system. A very simple illustration, which is conceptually similar to our use of a kernel

smoothing technique is shown in Fig. 3.13, where the real valued function drawn with

a red line is estimated using a number of observations represented as a histogram.

Figure 3.13: Simple example of kernel smoothing

10For a summary of smoothing techniques see http://data.princeton.edu/eco572/smoothing.pdf
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Once again, we provide a number of illustrative examples using the same toy

character-based sequence as before. In the following figures the process of transform-

ing the repeat extraction output of the previous phase into a histogram-like summary

and subsequently into an estimated density distribution is shown. Examples use both

the dot-plot component’s output as well as outputs from the enhanced suffix array com-

ponent for different parameter settings.
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Figure 3.14: Repeat density analysis of repeats extracted from the dot-plot

component

In Fig. 3.14 the input of the repeat analysis phase is the list of repeated elements

extracted from the dot-plot component (displayed visually in the leftmost part of the

figure). The repeat summarization step is performed by adding the number of dots per

row, which results in the histogram-like representation shown in the middle part of the

figure (rotated vertically for clarity reasons). The erratic behaviour of the histogram

is evident in this case. As a solution to this problem, the kernel-smoothing step of the

process is applied to the data and results in the continuous distribution shown in the

rightmost part of the figure (red line).

The same process is illustrated in Fig. 3.15, only this time the repeats that are fed

into the density analysis phase are extracted by the enhanced suffix array component.

The minlen and minrep parameters used for repeat extraction in each figure are noted

above the corresponding dot-plot.
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Figure 3.15: Repeat density analysis of repeats extracted from the enhanced

suffix array component

Although this is a toy example, it is easily noticeable that the repeat density dis-

tributions resulting from the enhanced suffix array component are more well-behaved

and regions of high repeat density are more easily identified.

All the examples above have been dealing with a character-based sequence repre-

sentation. As described in section 3.3.1, the two alternatives of the simple and extended

token-based sequence representations also exist. Although the repeat extraction is per-

formed on the respective sequence representation (character- or token-based) the repeat

density analysis is always done on a character level. This is made possible using the

position boundary pairs that are outputted from the sequence translation component

(see Fig. 3.5 and 3.6).

Recalling what was mentioned earlier, each sequence element resulting from a

token-based translation corresponds to a starting and ending position pair that maps

the translated element to the characters of the source it was derived from. Using these

boundaries makes it trivial to map the extracted repeats from a token-based sequence

back to the original source characters they correspond to. Any dot indicating a repeated
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token-based element will be mapped to the consecutive characters-based elements it is

derived from, incrementing all their repeat counts by 1. This means that the histogram

and density distribution produced by steps 2 and 3 of the repeat density analysis phase

respectively will always be in terms of the original character-based sequence.

3.3.4 Segments Extraction
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The repeat density analysis phase of our system produces a density distribution that

estimates the number of repeats that correspond to each element of the character-based

representation of a web-page. Our hypothesis is that regions of the web-page that

are densely populated by repeats, are good estimations of where the segments to be

extracted exist.

It is now trivial to identify those regions of high repeat density given the output of

the previous phase. This is achieved by applying a simple peak extraction algorithm

that identifies any local maxima that exist in the repeat density function. A simple

example of peak identification is shown in Fig. 3.16. The repeat density function

illustrated is the one produced by the example of Fig. 3.15(a) shown in more detail

and horizontally oriented. The extracted peaks are marked with blue x’s11.

< h t m l > < h 1 > < p > e x a m p l e < / p > < / h t m l >
0
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2

3

Repeat Density Estimation (minlen = 2)

Figure 3.16: Peak extraction applied to a repeat density function

11Even in this toy example, the identified peaks are placed close to areas where opening and closing
html tag brackets exist, which are actually the most common elements of the sequence.
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We expect that these peaks are – loosely – positioned at the center of the content

segments to be extracted. Given a set of peaks, the second part of the segment extrac-

tion phase constitutes of two alternative approaches of extracting those segments. The

first, a naive one, makes no discrimination between peaks, while the second one uti-

lizes a clustering algorithm in order to only extract segments around a subset of peaks.

Both methods are described in the sections below.

3.3.4.1 Naive Extraction

Recall the interspersed segmentation definition provided in section 3.1.3. According to

that, any sequence S of length n is associated with an M-length array 〈p1, p2, . . . , pM〉
of potential boundary positions, which specify M+1 adjacent non-divisible elements

〈[0, p1), [p1, p2), . . . , [pM,n]〉.
In the case of web-page segmentation and, particularly, the character-based se-

quences that we always deal with at this phase of the system, it makes intuitive sense

to set these M potential boundaries at the starting and ending positions of html tags.

By doing so, we make sure that no html tag is split in half by a boundary and that any

content section in-between html tags always remains undivided.

Given the M-length array of potential boundaries described above, the naive seg-

ment extraction method is performed in a straightforward manner. For each peak ex-

tracted from the repeat density function, we identify the potential boundary position

that is positioned closest to it. This is considered the “anchor” of the current segment

and will be referred to as pa ∈ 〈p1, p2, . . . , pM〉.
Now, our goal is to extend pa to both directions in order to obtain the appropriate

opening (popen) and closing (pclose) boundaries for the current segment. We do this in

a trivial way, by incrementally advancing the candidate boundaries to the left and to

the right respectively by one boundary position at a time. This incremental procedure

is terminated either when we reach a position that exceeds the middle point between

the current and the next/previous peak, or when a maximum allowed margin between

popen and pclose is reached12. By doing so for every peak, we end up with a set of

segmentation boundaries which are represented as an interspersed segmentation array

Ẍ – as defined in 3.1.3.

12This maximum margin is empirically learned and is set to 1.5 times the average true margin of any
segment in the training instances.
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An example of a final segmentation output of our system using the naive segmen-

tation is shown in Fig. 3.17. In it, the repeat density distribution of a single web-page

– from the youtube.com user videos web-source – is drawn using a red line. The

ground truth segmentation of the particular page is illustrated using the vertical green

regions bounded with black lines indicating the segmentation boundaries13. The pre-

dicted segments of our system are marked using horizontal magenta lines indicating

their spanning area.
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Figure 3.17: Example segmentation output with naive extraction

The issue with this naive approach is evident in the above graph. Although a very

precise identification of the true segments is achieved, our predicted output includes a

number of segments that do not correspond to any actual content section. This is due to

the abundance of repeated patterns in the sequence that may not necessarily be related

to the segments we want to extract.

13In this case the segments happen to be adjacent.
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3.3.4.2 Extraction via Peak Clustering

A simple, yet effective concept for improving the naive segmentation extraction com-

ponent described above has been designed as an alternative for this system phase. As

seen on Fig. 3.17, not all peaks corresponded to the actual content segments we wanted

to predict. However, the peaks that did correspond to the content segments exhibited

a homogeneity in terms of their height. The idea behind this segment extraction tech-

nique is to group all similar, in terms of height, peaks into peak subsets. Then the most

dominant subset could be selected and only segments from its peaks will be extracted.

The obvious choice for any task involving the grouping of similar instances is clus-

tering techniques. The simplest clustering algorithms, k-means, has the drawback that

requires the number of groups evident in the data to be known beforehand, which is

not the case for our problem.

The alternative to k-means is the more sophisticated family of methods referred

to as hierarchical clustering methods and in particular the single-link agglomerative

clustering algorithm [Sibson, 1973]. In single-link agglomerative clustering, each ob-

servation is initially assigned to its own group/cluster. Subsequently, pairs of clusters

are merged in a bottom-up manner based on which two clusters include the two most

similar observations. As a result bigger clusters will start to form. The procedure is

continued until a cut-off condition is met.

In our context, each peak is an observation with a single feature; its height. Using

the above described procedure, clusters of peaks with similar heights will begin form-

ing groups. The process will be terminated when the next cluster merge that is about

to occur would be between two clusters whose height distance is above an empirically

chosen threshold14.

The output of the above algorithm is a set of clusters, each consisting of an arbitrary

number of peaks, as shown in Fig. 3.18. The dashed horizontal lines roughly indicate

the decision boundaries that split the clusters (in terms of peak heights). We continue

by extracting the segments that correspond to each peak in the same way we did for

the naive method. The colour of the segment marks in Fig. 3.18(a) indicate which

segments are grouped together.

14The threshold is set to t = 0.1 x maximum height difference between any two peaks.
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Figure 3.18: Illustration of peak clustering (a) before and (b) after cluster

selection

The next step of our method is to decide which cluster should be selected to output

the final segmentation prediction. In order to do so we need to define the total signifi-

cance of the segments in each cluster. We expect that the actual content segments will

span the largest portion of the web-page. Based on that, we select the cluster that spans

the largest portion of the web-page in terms of characters in-between html-tags.
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Table 3.1 shows the content character counts for each cluster of the example web-

page.

Cluster (Colour) Content characters

1 (Magenta) 2188

2 (Blue) 84

3 (Cyan) 188

4 (Green) 230

Table 3.1: Total number of content characters in each cluster

By selecting the cluster that spans the largest overall area in terms of in-segment

content characters, our expectation is that in most cases the correct cluster will be

selected. In the example of Fig. 3.18 the resulting segment extraction is an obvious

improvement compared to the naive method.





Chapter 4

Experiments

The system that was designed and built for this thesis consists of 4 main building

blocks, as those described in chapter 3. Each of these operational phases has a num-

ber of major variations and/or tuning parameters that are expected to affect its perfor-

mance.

Some of these variations/parameters are either easy to be tuned and result in non-

significant performance changes or, in some cases, their trivial nature is simply not

interesting enough to require proper experimental assessment. Therefore, the focus of

our experimental evaluation efforts is shifted towards those factors that constitute the

design backbone of our system and any parameters that control their operation.

Having this in mind, the evaluation phase of this project was designed in order to

experimentally assess the following hypotheses:

1. Repeat analysis techniques and tools can be utilized for the task of web-page

segmentation in the context of content extraction. The two basic components for

repeat extraction that were used (dot-plots and enhanced suffix arrays) will be

tested and compared in order to verify this claim.

2. The sequential nature of web-pages provides a very flexible basis for repeat anal-

ysis, since different levels of sequential abstraction can be used with varying

results. Three different sequential representations will be evaluated.

3. The segment extraction phase of our system utilizes the novel process of repeat

density analysis in order to output the predicted web-page segments. This is

achieved using two segment extraction methods: a naive one and a more sophis-

ticated which uses a clustering technique. The potential improvement that the

clustering method brings will be assessed.

49
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The rest of this chapter is structured as follows: In section 4.1 the dataset that was

used for the experimental evaluation will be described. Section 4.2 will provide the

basic methodology of the evaluation in terms of the objective function that was used

and any secondary evaluation metrics utilized. Additionally, a brief description on how

the ground-truth for these experiments was established will be given. Finally, section

4.3 will provide detailed descriptions on the experiments performed and their outcome,

as well as critical discussion of these results.

4.1 Dataset

One of the most significant issues with previously developed web-page segmentation

techniques was the insufficient focus that was put upon creating a diverse enough

benchmark dataset, in order to train, test and evaluate the segmentation methods. For

this reason, one of the main objectives of this project was to create an appropriate

dataset that will be used for training and evaluating the performance of the built project

and – possibly – of future efforts on web-page segmentation in this context.

The dataset to be created will consist of a large number of web-pages as html source

code files. The first step towards building this dataset is to identify a diverse enough

set of web-domains that are suitable for the task of web-page segmentation. The task

that this project deals with sets a few requirements on the type of web-domains that

should be used. Namely, the key points to be met are:

• All web-pages should have a group of multiple content sections of similar struc-

ture.

• The sections should exhibit adequate level of visual and content homogeneity.

• The sections should be presented in a list- or grid-like manner that makes their

grouping obvious.

• The total area of the web-page covered by the content sections should be large

enough to be considered the most significant part of the page.

• Gathering a large number of web-pages from the domain should be fairly easy

and not violating the web-domain’s crawling policies.

Luckily, an abundance of web-domains that meet these requirements can be found

in the WWW today. Online stores, search engines of any type, blog-like web-pages,
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user communities, video streaming services are just a small portion of the kind of

sources we should be looking for.

After careful examination of various web domains a total number of 7 different

sources were selected coming from 5 web-domains so that the aforementioned criteria

would be met and the resulting collection would be as diverse as possible. The 7

sources are presented in Table 4.1:

Web-domain Web-site Description Source Type Presentation

google.com Search Engine Search Results List

bing.com Search Engine Search Results List

reddit.com Discussion Community User Posts List

ebay.co.uk Online Store Search Results
List

Grid

youtube.com Video Streaming Service
Search Results List

User Videos Grid

Table 4.1: Description of web-page sources used in the dataset

Custom-built web-crawlers were developed in order to automatically obtain a large

number of individual web-pages from each source, while respecting the crawling poli-

cies of each web-domain. A diverse list of short queries was created in order to obtain

pages from the 4 sources that consist of query-based, search results web-pages (see

Table 4.1). The rest of the sources wer crawled in the usual, url-following manner.

Statistical summaries of the pages fetched from each source are given in Table 4.2:

Source # of Pages # of Segments/Page1

google.com 1920 10

bing.com 1920 10

reddit.com 1903 25

ebay.co.uk (List View) 1822 25/50/1002

ebay.co.uk (Grid View) 1825 24/48/962

youtube.com (Results) 1800 20

youtube.com (User Videos) 1663 30

Total 12853 –

Table 4.2: Dataset statistics
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As Tables 4.1 and 4.2 show, the resulting dataset covers a large spectrum of web-

page styles in terms of web-domains, types of data presented, size of content sections

and presentation layout. Figure 4.1 shows two representative, but very different from

each other, web-pages from our dataset. In Fig. 4.1(a) a grid-layout, strictly structured

web-page, containing 30 content sections, each of them covered mainly by a picture

is provided. In Fig. 4.1(b) a list-layout, loosely-structured web-page, containing 10

content section, each of them consisting purely by text is shown.

(a) Grid Presentation (youtube.com) (b) List Presentation (google.com)

Figure 4.1: Examples of web-pages from our Dataset

4.2 Evaluation Methodology

The segmentation system built for this project has many unique properties in terms of

the novelty of techniques that it utilizes and combines for the purpose of web-page

segmentation. However, our goal had always been not to develop a segmentation algo-

rithm in a heuristic manner, but instead, learn how to segment web-pages adaptively,

1Refers to the typical number of content sections per page. Variations may exist.
2Ebay.co.uk allows control over the number of results per page. All 3 given option were used to

achieve increased data diversity.
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based on existing data. For this purpose, our segmentation system has been built fol-

lowing the basic principles of machine learning. It has been repeatedly reported in

this thesis – and formally described in chapter 3 – that each pipeline component has a

number of variations or parameters that are expected to affect the overall performance.

Instead of deterministically deciding the settings of the system based on our intuition

or on empirical observations, any parameter that is expected to be an important factor

on the segmentation output will be learned in a principled way. In order to do so, two

key decisions need to be made:
• How will the ground-truth segmentation of our dataset be generated, and
• Which objective function will be used to learn any significant component param-

eters and to compare major component variations.

4.2.1 Ground Truth Generation

The need for a ground truth in most machine learning algorithms has a dual utility.

Firstly, it is used in the training procedure of the system in order to optimize any

parameters and, secondly, it is used as a reference in the testing procedure in order to

assess the overall system performance or to compare major operational variations.

In the context of our task, the ground truth segmentation of a web-page is defined

as follows. Let S be the character-based sequence of a web-page of length n. Let

〈p1, p2, . . . , pM〉 be an array of potential boundary positions in S. Then, T̈ is an M-

length array defining the ground truth interspersed segmentation of S, such that all sub-

sequences of S that are defined as segments in-between opening and closing boundary

positions in T̈ correspond to actual content sections of the web-page.

The manual extraction of the true content section of the web-pages in our dataset is

a tricky task. It requires careful inspection of the pages’ source code from all the do-

mains in order to identify the exact patterns that correspond to the starting and ending

positions of each segment. Because of the structured nature of multi-content web-

pages there is almost perfect consistency throughout each source in our dataset regard-

ing the sequence of html tags that denote these starting and ending positions.

By compiling the appropriate regular expressions for each source and and running

segmentation scripts for all web-pages of the data-set we obtain a set of ground truth

segments T̈ – as it was described above – for each page.

The non-trivial procedure of manually segmenting these web-pages underlines the

importance of a web-page segmentation system like the one proposed in this thesis.
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4.2.2 Evaluation Metrics

In section 2.4, a brief description of the family of window-based evaluation metrics,

designed for segmentation tasks, was given. In this section, formal mathematical defi-

nitions of two of these metrics will be provided3. An important issue that makes these

metrics unsuitable for the evaluation of our task will be explained. Finally, an extension

of these metrics that accounts for this issue will be proposed as an objective function

for our experiments. For ease of understandability, the two segmentation definitions

given in 3.1.3 will be re-introduced.

Pk and k-κ

The most common way to formally define a segmentation task is the following4. Each

sequence S of length n, which is to be segmented, is associated with an M-length array

〈p1, p2, . . . , pM〉 of potential boundary positions, which specify M + 1 adjacent non-

divisible elements 〈[0, p1), [p1, p2), . . . , [pM,n]〉.
A segmentation X is defined as a sequence of Boolean variables 〈X1,X2, . . . ,XM〉,

such that Xm = 1 if there is a boundary at pm, and Xm = 0 otherwise. Let X j
i denote

a subsequence of X from i to j inclusive, referred to as a window, and let ΣX j
i denote

its sum. Finally, let δ(X, i,k) be the Boolean boundary presence indicator function,

indicating whether a boundary is present in a k-length window starting at i:

δ(X, i,k) =

{
0 if ΣXi+k−1

i = 0

1 otherwise.

Let R and H be a reference and a hypothesized segmentation respectively. We define

the segmentation evaluation metric Pk(R,H) as:

Pk(R,H) =
∑

M−k+1
i=1 1[δ(R, i,k)−δ(H, i,k)]

M− k+1
(4.1)

where k denotes the window length and 1[x] is a non-zero indicator function, evaluating

to 1 if x 6= 0, and 0 otherwise. The conventional value of

k = max(b(M+1)/2((#o f re f . segments)+1))c was used.
3This definition strictly follows the one found in Niekrasz and Moore [2010].
4Note that this is not the definition that applies in our for our task. It is provided in order to make

the metrics understandable. See rest of the section for how these metrics are extended for our purposes.



4.2. Evaluation Methodology 55

In simple terms, the Pk(R,H) metric calculates the proportion of k-length windows,

where R and H disagree about the existence of a boundary5. A Pk value of 1 denotes

complete disagreement, while a value of 0 denotes perfect agreement between R and

H.

Although Pk is widely used as a benchmark segmentation metric, Niekrasz and

Moore [2010] concluded that it is positively biased towards hypothesized segmenta-

tions with either very few boundaries or boundaries mainly concentrated around the

edges of sequences.

Furthermore, they propose the novel k-κ metric that deals with these biases by ac-

counting for chance agreement. k-κ is defined as:

k-κ(R,H) =
1−Pk(R,H)−C

1−C
(4.2)

where C is the probability of having an agreement between R and H by chance. A k-κ

value of 0 reflects chance agreement, a value of 1 is perfect agreement, and a value of

-1 is complete disagreement.

The proposed P̈k and k̈-κ

Both metrics mentioned above are designed to evaluate segmentations where a se-

quence is segmented into adjacent segments that cover the whole sequence. However

in our task, the segments to be extracted are not guaranteed to be adjacent – but may

as well be –, since irrelevant web-page section may or may not exist in-between two

content segments. Additionally, they will definitely not cover the whole web-page

sequence.

In the contrary, two type of boundaries are defined for our segmentation problem:

opening and closing ones. In this case, a segment is defined as the sub-sequence in-

between an opening and a closing boundary. We will now formally define this type of

segmentation, which will be referred to as interspersed segmentation.

In the same way as before, let the sequence S of length n be associated with an

M-length array 〈p1, p2, . . . , pM〉 of potential boundary positions, which specify M+1

adjacent non-divisible elements 〈[0, p1), [p1, p2), . . . , [pM,n]〉.

5Pk does not take into account whether the actual number of boundaries in each k-length window
also matches or not.
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An interspersed segmentation Ẍ is defined as a sequence of paired Boolean vari-

ables 〈Ẍ1, Ẍ2, . . . , ẌM〉, such that:

Ẍm =


(1,0) if there is an opening boundary at pm

(0,1) if there is a closing boundary at pm

(1,1) if there is an opening and a closing boundary at pm

(0,0) if there is no boundary at pm

Let Ẍ j
i denote a subsequence of Ẍ from i to j inclusive, referred to as a window,

and let ΣẌ j
i,o and ΣẌ j

i,c denote the number of opening and closing boundaries in that

window respectively. Finally, let δo(Ẍ, i,k) be the Boolean opening boundary presence

indicator function, indicating whether an opening boundary is present in a k-length

window starting at i:

δo(Ẍ, i,k) =

{
0 if ΣẌi+k−1

i,o = 0

1 otherwise.

and let δc(Ẍ, i,k) be the Boolean closing boundary presence indicator function, indi-

cating whether a closing boundary is present in a k-length window starting at i:

δc(Ẍ, i,k) =

{
0 if ΣẌi+k−1

i,c = 0

1 otherwise.

Let R̈ and Ḧ be a reference and a hypothesized segmentation respectively. We define

the segmentation evaluation metric P̈k(R̈,Ḧ) as:

P̈k(R̈,Ḧ) =
∑

M−k+1
i=1 1

[
|δo(R̈, i,k)−δo(Ḧ, i,k)|+ |δc(R̈, i,k)−δc(Ḧ, i,k)|

]
M− k+1

(4.3)

This time, the P̈k(R̈,Ḧ) metric calculates the proportion of k-length windows, where

R̈ and Ḧ disagree about the existence of either opening or closing boundaries. P̈k takes

values between 0 and 1 similarly to the simple Pk.
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In the same exact way as before we define the metric k̈-κ which accounts for chance

agreement and will be used as an objective function for our experimental evaluation:

k̈-κ(R̈,Ḧ) =
1− P̈k(R̈,Ḧ)−C̈

1−C̈
(4.4)

where C̈ is the probability of having an agreement between R̈ and Ḧ by chance. k̈-κ

takes values between -1 and 1 similarly to the simple k-κ.

In all of our experiments, k-κ was used as the objective function.

k-precision and k-recall

Finally, we will use two secondary metrics for assessing some of the hypotheses. These

are the k-precision and k-recall measures and are the windowed variants of the typi-

cal precision and recall used throughout the machine learning literature. k-precision

corresponds to the proportion of all boundary positions which we predicted, that were

actual boundaries and k-recall corresponds to the proportion of all actual boundary po-

sitions which we managed to predict. Both metrics introduce a near miss tolerance (as

all window-based metrics do) and their values range from 0 to 1.

4.3 Experiments and Results

This section provides detailed information about the hypotheses that were set for eval-

uating our system, how they were tested, the results that were obtained and how these

can be interpreted with respect to what was expected. Where possible, significance

testing is used to further validate the outcome of the experiments.

In order to optimize the systems under testing, based on our objective function,

we used the principle machine learning procedure of splitting our dataset into a train

and a test set. We optimized any parameters on the train set and tested the system’s

performance on the test set. In order to split the full corpus we used the following

number of instances from each source:

• Training set: 1000 web-pages
• Test set: 500 web-pages

Throughout all experiments we will compare results against:

1. Our baseline system configuration which as described in section 4.3.1.

2. Any alternatives configurations that exist regarding the hypothesis that is tested

at each stage
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4.3.1 Preliminaries

Summary of System Variations

Before getting into the actual experiments discussion, a summary of the component

variations that can be used as alternatives and the parameters that affect their perfor-

mance at each phase of our system is given in Table 4.3.

System Phase Major Alternatives Important Parameters

Sequence Translation

No translation -

Token-based translation
Type: Simple or

Extended

Repeat Extraction

Simple dot-plot -

Enhanced Suffix Array
minlen

minrep

Repeat Density
- -

Analysis

Segment Extraction
Naive -

Clustering -

Table 4.3: Summary of system phases and their alternatives/parameters

All sets of competing alternatives and parameters will be evaluated in the following

section.

Baseline

Without a doubt, the most crucial component of the system, in terms of novelty and

importance is the repeat extraction component. It represents the center-piece around

which any other component was built, in order to complement its utility. As described

in detail in section 3.3.2, the repeat extraction phase includes two major alternatives,

as to how repeat information is extracted: the simple dot-plot component and the en-

hanced suffix array component.

The dot-plot, being a far less sophisticated repeat analysis tool than enhanced suffix

arrays, was chosen as the core of the baseline configuration against which any other

aspect of our system will be tasted.
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More specifically, a “stripped-down” version of the full system configuration will

be considered the baseline for all performed experiments. This configuration will use:

• No sequence translation (character-based sequence representation).

• The simple dot-plot component for repeat extraction.

• The naive method for segment extraction.

Significance Testing

Where appropriate – and possible – our experiments will be accompanied by a sig-

nificance test that aims at validating our results in a statistically solid manner. There

are numerous types of significance tests, each suitable for various types of tasks and

requiring different assumptions to be held. All tests aim to compute the probability –

known as p-value – that the generated observations would occur by chance in a given

null hypothesis. If this p-value is smallest than a given threshold (usually 0.1) then the

null hypothesis is disproved, meaning that the observations are statistically significant.

In our context the observations would be pairs of k̈-κ values (one value from each

system configuration being compared). The significance test applied is the one-tailed,

paired t-test.

The unit for which each observation pair will be sampled is an important choice. In

our initial tests, we used single web-pages as a unit for significance testing, i.e. we got

a few thousands observations (k̈-κ value pairs) for each tested hypothesis. We observed

that, even when the performance difference between the compared configurations was

not too vast, the resulting p-value was extremely small (down to a magnitude of 10−7).

We concluded that per-web-page significance testing was not a concrete enough choice

in order to validate our experiments. This is probably due to the violation of the inde-

pendence assumption that t-test (as most of significance tests) requires to be held, as

well as due to the huge number of observations.

As a far more conservative alternative, we will apply t-tests using web-sources as

observation units. This means that for each hypothesis we will only have a sample of

7 observations. This way the null hypothesis will be much harder to disprove, but its

significance will be much more statistically solid.
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4.3.2 Evaluating the Repeat Extraction Component

In this section we will assess the performance of the repeat extraction component

alone. The evaluation of the repeat extraction component constitutes of 2 main ex-

periments. First, the performance of our system, after being optimized using an equal

number training instances from all sources, will be evaluated. Then, we evaluate its

performance, after performing separate training procedures for each source in order to

assess the quality of its segmentations in-domain.

Our hypothesis is that the enhanced suffix array component will outperform the

simple dot-plot component, both when trained on all sources, and when trained and

tested in-domain. It is expected that in-domain performance will be superior of the

generalized one.

4.3.2.1 Generalization Performance (Trained on All Sources)

For this experiment we will use a stripped-down configuration6 of the system based

on the enhanced suffix array component and compare it to our baseline (for both, see

section 3.3.2).

In order to optimize the enhanced suffix array component’s two parameters – minlen

and minrep –, we ran a full parameter sweep7, using instances from all sources. The

pair of optimized parameters that resulted in the best mean k̈-κ value on the training

set was:

• minlen = 25
• minrep = 9

These parameter values were then used to test the generalization performance of

the system configuration on the test set. Table 4.4 shows the results in terms of average

k̈-κ over all test instances.

k̈-κ

Baseline 0.02017

En. Suf. Array
0.11164

(No translation)

Table 4.4: Generalization performance of stripped-down configuration

based on en. suf. array (trained on all sources)

6i.e. no translation and no segment clustering.
7minlen : {5,15,25,35,45}, minrep : {3,5,7,9}. See Appendix A for parameter sweep plots.
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We observe that even the most stripped-down version of our system based on the

enhance suffix array component outperforms the baseline (dot-plot). More specifically

the baseline’s performance is only slightly above random 8. While our the enhanced

suffix array configuration does not perform much superiorly than random, it is a defi-

nite improvement.

In order to get a more clear idea regarding where both our system configurations

perform well – and where not –, we averaged the k̈-κ output of the experiment per

source Our expectation is that the performance will vary a lot from one source to

another. Fig. 4.2 illustrates the results.

bing ebay(G) ebay(L) google reddit youtube(S) youtube(V)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

k̈
-κ

Per Source Scores

Dot-Plot(Baseline)
En. Suffix Array

Figure 4.2: k̈-κ values per source after training using all sources

Our expectation is confirmed. Firstly, the baseline configuration is steadily per-

forming close to random (its best output is slightly below 0.1, for Google). In the

contrary, the enhance suffix array configuration exhibits highly varied results for each

source. Its performance ranges from worse than random, to the surprisingly good re-

sults for the Reddit and Youtube Videos sources. The huge structural dissimilarities

between sources is, without a doubt, a deciding factor for this outcome.

8Recall that a k̈-κ value of 0 indicates chance agreement.
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Furthermore, we expect that the fact that the baseline does outperform the enhanced

suffix array configuration in some of the sources a result of placing potential segments

throughout the web-page sequences. In order to assess this claim, we calculated k-

precision and k-recall values for all test instances. The resulting mean values are shown

in Table 4.5.

k-precision k-recall

Baseline 0.27244 0.7735

En. Suf. Array
0.30334 0.54492

(No Translation)

Table 4.5: k-precision and k-recall values

Once again the results confirm our expectations. The combination of a very high

k-recall and a contrastingly low k-precision, resulting from the baseline’s output, is

indicative of the fact that the dot-plot component tends to extract segments all over

the web-page’s sequence. While it may end up estimating the true segments, it also

outputs numerous non-existent ones.

In order to validate the statistical significance of these results, we performed a

one-tailed, paired t-test using 7 k̈-κ value pairs – one for each source – as these were

illustrated in the bar chart of Fig. 4.2. The result of the t-test is shown in Table 4.6.

Comparison p-value

Baseline vs.
En. Suf Array

0.1667
(No Translation)

Table 4.6: T -test significance testing for the basic system configuration

Although we did not get a p-value clearly indicating statistical significance9, the

resulting value is promising enough, considering that we used the least sophisticated

system configuration based on enhanced suffix arrays.

9A p-value < 0.1 is required for this.
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4.3.2.2 Generalization Performance (Trained on each Source Separately)

Probably the most clear conclusion drawn from the previous experiment was the in-

ability of the particular system configuration to generalize when optimized throughout

all sources.

In this experiment, our goal is to investigate whether the system’s performance

would be improved, when trained specifically for a single source. Although this will

definitely not constitute concrete evidence for its robustness, it will be an important

indication of its segmentation capabilities, given the proper set of parameters.

In order to perform the experiment we trained the system a total of 7 times – once

for each source – resulting in 7 minlen-minrep parameter pairs10. The optimized pa-

rameters for each source are shown in Table 4.7.

Source minlen minrep

Bing 45 5

Ebay (List) 15 9

Ebay (Grid) 5 3

Google 45 9

Reddit 25 3

Youtube (Results) 45 7

Youtube (User V.) 35 5

Table 4.7: Separately optimized parameters for each source

Subsequently, using the respective parameter pair for each source, we tested the

system’s performance by running 7 separate experiments, which resulted in 7 separate

k̈-κ performance values. Table 4.8 shows the mean of these 7 values.

Mean k̈-κ

Baseline 0.02017

En. Suf. Array
0.22537

(No Translation)

Table 4.8: Mean k̈-κ value, averaged over the 7 system runs, each optimized

specifically for a single source

10Once again with no translation/no segment clustering
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As expected, the mean performance across all 7 experiments is significantly higher

compared to the previous experiment. A more detailed illustration (Fig. 4.3) shows

the k̈-κ value for each source, once again compared to the previously obtained values

from our baseline. This time, all k̈-κ values for the enhanced suffix array component

are positive (indicating segmentation agreement with the reference) and better than the

respective baseline performance (except from Bing’s score).

bing ebay(G) ebay(L) google reddit youtube(S) youtube(V)
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En. Suffix Array

Figure 4.3: k̈-κ value of 7 in-domain experiments, each optimized specifi-

cally for a single source

Finally, the mean k-precision and k-recall values across the 7 experiments are

shown in Table 4.9, once again indicating significant improvement compared to the

previous experiment.

k-precision k-recall

Baseline 0.27244 0.7735

En. Suf. Array
0.37689 0.62595

(No Translation)

Table 4.9: k-precision and k-recall values
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At this point, it should be noted, that the results of this experiments should be

approached with caution. Definitely, they present promising evidence that, given the

appropriate parameters, this basic system configuration can perform fairly well in-

domain, regardless not using some of the more sophisticated component variations

that are available. However, this experiment provides no evidence of generalization

capabilities of the system. Each system run was optimized for the particular source it

was tested for. Further experiments, which will focus on optimizing parameters over

all sources (as in the first experiment) will provide more concrete evidence on the

system’s capabilities.

4.3.3 Evaluating the Effect of Sequence Translation

Up to this point, the experiments that have been presented, only focused on the repeat

extraction component, without accounting for other components’ variations. In fact,

the configurations used in those experiments have not utilized any of the more sophisti-

cated alternatives that the sequence translation and the segment extraction components

introduce.

In this experiment we will evaluate the sequence translation component’s effect

on the overall system performance. Recall the tree alternative translation policies that

were introduced in section 3.3.1:

• No translation (character-based sequence)

• Simple translation (simple token-based sequence)

• Extended translation (extended token-based translation)

Our hypothesis is that each translation configuration will significantly affect the

overall performance of the system, both in terms of segmentation results, as well as

regarding the repeat extraction parameters that will be used to obtain those results. We

want to investigate these effects.

Character-based sequences have already been tested and compared to our baseline

in the first two experiments presented. For this experiment we separately trained the

system for the two token-based translations as well11. This way, we obtained two more

minlen-minrep parameter pairs, which are shown in Table 4.10.

11On the full training set.
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Translation Policy minlen minrep

None 25 9

Simple 3 7

Extended 9 9

Table 4.10: Optimized parameters for each sequence translation policy

Before moving on to the experimental results, the optimized parameters for each

translation policy already provide an interesting observation. The optimal value for

the minlen parameter significantly differs from one policy to another. In particular,

the character-based sequences are better suited for high minlen values (25), followed

by the extended token-based sequences (9) and, lastly, by the simple token-based ones

(3). This makes intuitive sense, since, in general, character-based sequences are obvi-

ously far longer compared to extended token-based ones, which are, again, longer than

simple token-based sequences. More on this subject will be discussed in 4.3.4.

Using these three parameter settings for the enhanced suffix array component, each

combined with its respective sequence representation, we tested their generalization

performance by running the system on our full test set. Table 4.11 shows the resulting

k̈-κ values obtained from each run.

Translation k̈-κ

Baseline None 0.02017

En. Suf. Array
None 0.11164

Simple 0.17286

Extended 0.17476

Table 4.11: Generalization performance of each translation policy

The resulting performance measurements indicate that token-based translation poli-

cies do in fact improve the performance of the system. Both perform better than the

baseline and the ”no-translation” system configurations used in previous experiments.

Recalling the reasons that led to the design of these translation policies, token-

based sequences can definitely reduce the amount of noise that is a characteristic of

character-based ones. They provide a level of sequential abstraction that is not affected

by insignificant character mismatches, while still accounting for the overall structure

of the web-page in terms of html-tags, tag parameters and number of content words.
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In terms of their performance, the two token-based policies do not differ signifi-

cantly in order to extract safe conclusion regarding which one should be preferred.

A summary of the generalization performance of each policy per data source is

given in Fig. 4.4.

bing ebay(G) ebay(L) google reddit youtube(S) youtube(V)
−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

k̈
-κ

Per Source Scores
Dot-Plot (Baseline)
En.S.Ar. (No Trans.)
En.S.Ar. (Simp. Trans.)
En.S.Ar. (Ext. Trans.)

Figure 4.4: Generalization performance of translation policies per source

It is evident that different policies are better suited for different sources. In general,

token-based ones tend to perform better, although interestingly enough, not translated

sequences perform very well on the two Youtube sources, as well as on Reddit. Finally,

the Bing web-pages seem to be rather problematic since they result in negative k̈-κ

values for all translation settings. A possible explanation is that Bing tends to include

numerous irrelevant elements in-between its results, that may negatively influence the

segmentation performance. Still, more detailed investigation, regarding what makes

each source better suited for a particular translation policy, should be performed, but is

outside the scope of this project.
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Finally, significance testing was performed in order to validate whether the perfor-

mance improvement that token-based translation policies resulted in were statistically

concrete. Once again, we used 7 pairs of averaged k̈-κ values – one for each source

– in order to compare the two policies to our baseline. Table 4.12 shows the resulting

p-values.

t-test

Comparison p-value

Baseline vs.
En. Suf. Array

0.09925
(Simple Translation)

Baseline vs.
En. Suf. Array

0.05224
(Extended Translation)

Table 4.12: T -test significance testing for both translation policies

This time, both system configurations under testing performed well enough in order

for the results to be statistically significant. The null hypothesis, that their performance

could have resulted by chance is disproved.

4.3.4 Effect of minlen and minrep parameters

In this section a brief discussion on how the two main parameters of the enhanced suffix

array repeat extraction component affect the performance of the system is provided.

The most obvious conclusion that was extracted from the parameter sweeps per-

formed at the training stage of our experiments is that the minrep parameter has mini-

mum effect on the overall system performance12. For any tested value, the performance

changes were minimal both per source and in the full corpus.

On the other hand minlen’s effect on the quality of segmentation is far stronger.

As Fig. 4.5 shows, minlen is a deciding factor that heavily influences performance on

most sources (dotted lines) and on the full corpus (thick line)13.

12See Appendix A for all diagram tables of the parameter sweeps.
13A minrep value of 7 was used for these illustrations.
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Figure 4.5: Segmentation performance effect of minlen parameter in (a)

character- and (b,c) token-based sequences

In particular, in some cases, the performance shifts from one value of minlen to

another can be rather erratic. The Reddit and both Youtube sources – for the case of

”no translation” policy – are good examples. All three sources exhibit a big increase

in performance at the minlen = 25 mark, while the rest of the sources appear to be less

influenced. Reddit has the most erratic behaviour, since it immediately falls back to

worse than random performance.

The most interesting observation that can be extracted from these figures is the

smoothing effect that token-based translation has to this erratic behaviour. It is easily

observed that plots (b) and (c), corresponding to token-based translation, appear to
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have fewer shifts in performance for various values of minlen. This effect is even more

notable in the case of the extended token-based translation, where the performance on

all sources follows a smooth curve that has a maximum for minlen = 9.

This observation is supporting evidence of the positive effect that sequence trans-

lation can have to the overall behaviour of the system.

4.3.5 Effect of Clustering on Segment Extraction

The last factor of the system that will be evaluated is the segment extraction phase.

Recalling what was described in 3.3.4, the segment extraction component includes

two main alternatives; the naive extraction method and the clustering aided extraction

method.

The naive approach makes no distinction between the regions of high repeat density

(peaks), extracting segments from all of them. The clustering method tries to divide the

peaks into coherent groups and then, select the group that appears to be more dominant,

in terms of the area it covers on the web-page.

Our hypothesis is that clustering should result in a significant improvement in seg-

mentation performance. It is inevitable that regions of high repeat density will appear

even in parts of the web-page sequence that do not correspond to content sections.

Clustering appears to be a simple, yet effective way of dealing with this issue.

In order to assess this hypothesis, all optimized system configurations tested in the

previous experiments14 are now tested by enabling the segment clustering component.

Table 4.13 shows the results of this experiment by comparing previously reported

performance measures (no clustering) with the newly obtained ones (with clustering).

14See Table 4.10.
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Translation Segment Extraction Mean k̈-κ k-precision k-recall

Baseline None w/o clustering 0.02017 0.27244 0.77350

En. Suf. Array

None
w/o clustering 0.11164 0.30334 0.54492
with clustering 0.27459 0.44238 0.53904

Simple
w/o clustering 0.17286 0.33834 0.63968
with clustering 0.32622 0.46716 0.59947

Extended
w/o clustering 0.17476 0.34886 0.63520
with clustering 0.23773 0.39774 0.58269

Table 4.13: Generalization performance comparison with and without seg-

ment clustering

The difference in performance for all three enhanced suffix array-based configura-

tions is impressively vast. Clustering seems to provide the biggest performance boost

of all aforementioned system variations. This is evident both in terms of k̈-κ and k-

precision. k-recall values have slightly diminished, but the difference is insignificant

and probably expected, since proper segments are going to be discarded by the cluster-

ing algorithm from time to time.

As a final validation of these results we performed two groups of significance tests.

The first one (Table 4.14) is between our baseline and all three clustering-aided system

configurations.

t-test

Comparison p-value

Baseline vs.
En. Suf. Array

0.03713(No Translation)

(Segment Clusters)

Baseline vs.
En. Suf. Array

0.01672(Simple Translation)

(Segment Clusters)

Baseline vs.
En. Suf. Array

0.00885(Extended Translation)

(Segment Clusters)

Table 4.14: T -tests between clustering configurations and our baseline
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The second, and far more interesting one is between the clustering aided system

configurations and their naive counterparts (Table 4.15).

t-test

Comparison p-value

En. Suf. Array

vs.
En. Suf. Array

0.00197(No Translation) (No Translation)

(Segments: Naive) (Segments: Clusters)

En. Suf. Array

vs.
En. Suf. Array

0.00040(Simple Translation) (Simple Translation)

(Segments: Naive) (Segments: Clusters)

En. Suf. Array

vs.
En. Suf. Array

0.08006(Extended Translation) (Extended Translation)

(Segments: Naive) (Segments: Clusters)

Table 4.15: T -tests between clustering configurations and their naive alter-

natives

All 6 performed t-tests resulted in p-values < 0.1, providing statistical significance

to our results. Adding segment clustering to the optimized enhanced suffix array con-

figurations, improved their performance in an impressive way, providing a final vali-

dation to our novel system’s overall segmentation capabilities.
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Conclusions

For this project, we designed, built and thoroughly tested a novel web-page segmen-

tation system to be used in the context of Information Retrieval content extraction.

The novelty aspect of our approach lies at the utilization of repeat analysis techniques,

in combination with the sequential view of web-pages, in order to identify repeated

patterns in web-pages, that are expected to correspond to significant content sections.

The system that was built, consisted of four major components working together,

each one devoted to an independent phase of the web-page segmentation algorithm.

Our main goal was to assess the suitability of each component and to critically compare

the possible variations and parameters that could be used at each operational phase.

In order to do so we set a number of hypotheses to be experimentally tested and

evaluated. Each hypothesis that was designed, focused on a different factor that may or

may not affect the systems performance significantly. These hypothesis can be briefly

summarized as follows:
• Investigate the suitability of repeat extraction and analysis as the basic tool for

identifying content sections of web-pages. In particular the two components –

a baseline, based on dot-plots and a sophisticated enhanced suffix array – were

tested and compared. Our expectation was that enhanced suffix arrays should be

far more powerful and flexible than the baseline.

• Assess the flexibility that the sequential view of web-pages provides to the par-

ticular task. Test and compare each of the three levels of abstraction that were

designed for this project.

• Investigate how the segment extraction phase of the system can be improved by

using a novel clustering-based method for distinguishing between relevant and

irrelevant regions of high repeat density.

73
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By performing thorough experiments we came up with a set of impressive results

regarding those hypotheses. Most of our expectations were met and in some cases the

outcomes of the experiments were even more promising than expected.

Summarizing these outcomes we can conclude that:

• The enhanced suffix array is a powerful tool that can be used as the basis of a

web-page segmentation system based on repeat analysis. It can adapt to various

types of web-page sources and perform particularly well in all of them, given the

appropriate parameters.

• Even more importantly, when combined with an appropriate type of sequential

abstraction, the resulting repeat density analysis can result in a better and more

easily generalizeable system.

• On top of these main phases of the system’s pipeline, the novel clustering ap-

proach for the extraction of the final segments resulted in surprisingly impres-

sive segmentation quality. The concrete statistical evidence – coming from sig-

nificance testing – further solidify the fact that segment clustering should be an

extremely important factor for further extensions and variations of this approach.

Despite the overwhelmingly promising results, some concerning factors were iden-

tified. Most importantly, the highly diverse nature of web-pages makes the generaliza-

tion performance of our method suffer in cases of uniquely structures web-domains.

Although using sequential representation abstraction techniques, indicated that smoother

generalization is possible, such approaches need far more testing and improvements to

be considered usable in a greater scale.

Additionally, the discrete parameter space of this approach makes its optimization

procedure a non-trivial task. Although intense experiments were performed, the total

search space was definitely not explored thoroughly enough in the scope of this project.

Finally, the adaptable nature of our approach has already given answers to some

of the limitations of existing web-page segmentation efforts, even at this early stage.

Most importantly, since we are focused on the context of content extraction, its ability

to extract content sections that correspond to the most dominant segments of the page,

while ignoring the rest – thanks to the segment clustering component – constitutes a

major improvement compared to existing techniques.
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5.1 Future Work

The promising results that were obtained from this novel project should ideally be the

starting point for a much more detailed research investigation of the utility of repeat

analysis techniques for the task of web-page segmentation. Some of the main focuses

of further work on this approach should include:

• Much more detailed investigation of the effect of sequence translation should be

performed. This is significantly important, since evidence showed that there is

much room for improvement in terms of the generalization capabilities of our

system.

• As in every machine learning task, the collection of even more diverse data for

optimizing and evaluating the system’s performance should definitely be benefi-

ciary.

• More principled ways of optimizing the system’s components – especially the

repeat extraction phase – should be investigated. Parameter sweeps, although

useful, have limited capabilities at exploring the full parameter search space.

• The system was able of loosely identifying the regions that corresponded to con-

tent segments. However, much more sophisticated techniques can be applied in

combination with the very effective segment clustering method that is already

used. Sequence alignment techniques, that could make sure that the extracted

segments consist of roughly the same sequences of html-tags should be a promis-

ing way to further improve the overall performance of the system.
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Configuration Sweeps

Mean over all sources
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Ebay (List)
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Ebay (Grid)
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Google
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Reddit
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Youtube (Search Results)

5 15 25 35 45
−1.0

−0.5

0.0

0.5

1.0

tr
an

s
=

no
ne

k̈
-κ

minrep = 3

baseline
naive
clusters

5 15 25 35 45
−1.0

−0.5

0.0

0.5

1.0
minrep = 5

5 15 25 35 45
−1.0

−0.5

0.0

0.5

1.0
minrep = 7

5 15 25 35 45
−1.0

−0.5

0.0

0.5

1.0
minrep = 9

3 6 9 12 15
−1.0

−0.5

0.0

0.5

1.0

tr
an

s
=

si
m

pl
e

k̈
-κ

3 6 9 12 15
−1.0

−0.5

0.0

0.5

1.0

3 6 9 12 15
−1.0

−0.5

0.0

0.5

1.0

3 6 9 12 15
−1.0

−0.5

0.0

0.5

1.0

3 6 9 12 15

minlen

−1.0

−0.5

0.0

0.5

1.0

tr
an

s
=

ex
te

nd
ed

k̈
-κ

3 6 9 12 15

minlen

−1.0

−0.5

0.0

0.5

1.0

3 6 9 12 15

minlen

−1.0

−0.5

0.0

0.5

1.0

3 6 9 12 15

minlen

−1.0

−0.5

0.0

0.5

1.0



88 Appendix A. Configuration Sweeps

Youtube (User Videos)
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