Document Embeddings with Context Sampling

Stefanos Angelidis, Victor Lavrenko, Mirella Lapata

Institute for Language, Cognition and Computation, School of Informatics, University of Edinburgh

Why Document Embeddings?

- Embedding models are used widely for learning word representations from vast amounts of unlabeled text.
- Represent meaning of longer pieces of text \rightarrow embedding composition.
- Averaging / Syntax-aided composition:
- ▷ Can work for phrases or short sentences.
- Severe loss of semantic information as sequence length increases.
- ► CNNs / Recurrent NNs / Hierarchical NNs:
- State-of-the-art in many supervised tasks.
- Computationally demanding (need GPUs).
- \blacktriangleright Middle ground \rightarrow Paragraph Vector (Le and Mikolov, 2014).

Paragraph Vector

Evaluation

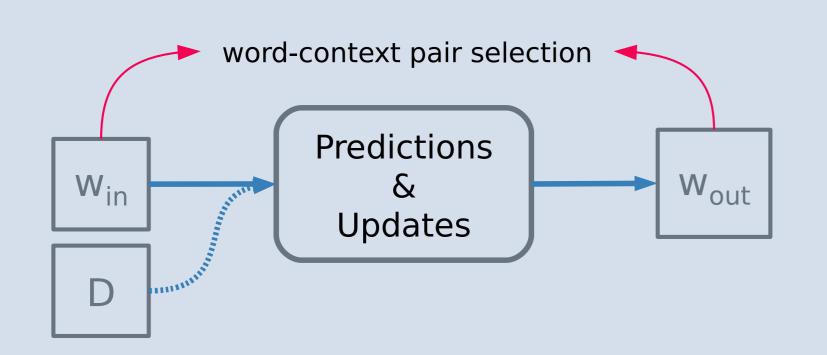
- Compare the quality of document embeddings learned using PV's window-based contexts and our context sampling policies (DE).
- ► We chose 2 **document-centric** tasks:
 - ▷ Ad-Hoc Search
 - Document Classification

Results: Ad-hoc Search

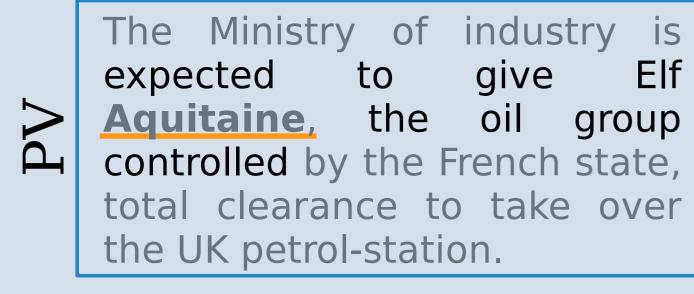
- ► Used 2 established TREC collection for Information Retrieval.
- Learned query and document embeddings (no supervision).

ROBUST

Documents ranked by their cosine distance to a query in embedding space.



- Extension of Skip-gram (Mikolov et al., 2013).
- Word and document embeddings are learned jointly w/o supervision.
- ► Words are paired with their window-based contexts.
- Document embeddings are also used to predict each word they contain.
- Issue: Are selected word-context pairs representative of content?



Window-based context

- Disregards word importance.
- Implicitly forces doc. embeddings towards frequent words.

This work: Context Sampling Framework

Methods	MAP	% -change		MAP	% -change	
		vs. PV	vs. DE _{idf}		vs. PV	vs. DE _{idf}
PV	0.1179			0.0938		
DE _{idf}	0.1328	12.6*		0.1154	23.0*	
$DE_{q.nn}$	0.1693	43.6*	27.5*	0.1442	53.7*	24.9*
$DE_{f.nn}$	0.1823	54.6*	37.3*	0.1631	73.8*	41.3*

* indicates significant improvement based on a two-tailed t-test with p < 0.01.

Can provide complementary signal to term-based IR methods.

Results: Document Classification

- Sentiment Analysis (IMDB) & Topic Classification (RCV1).
- Learned document embeddings (no supervision).
- ► Trained logit classifier using document embeddings as features.

Classification Performance

Accuracy (%)			
Methods	IMDB	RCV1	
N-gram	86.52	85.12	IDF and Neighborhood sampling
RNN-LM	86.61	85.08	outperform PV on both datasets.
PV	88 93	86 95	Great performance – complexity

► We introduce arbitrary contexts via Context Sampling.

Different sampling policies will result in different embedding spaces.

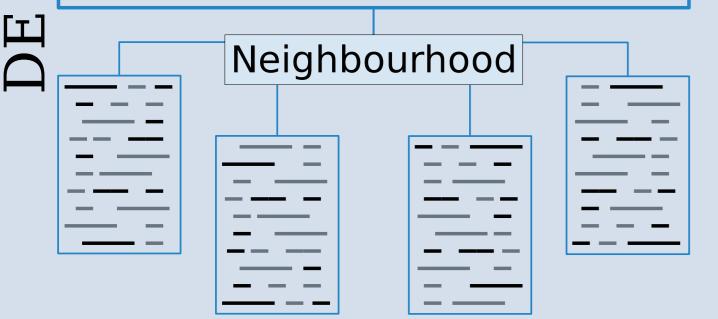
دب	The Ministry of industry is expected
idf	to give Elf Aquitaine, the oil
Ш	group control sy the month
\square	state, total clearance to take over
	the UK petrol-station.

IDF Sampling

Context words sampled from document-wide *tf.idf* distribution.

Doc. embeddings are positioned closer to content-heavy words.

The Ministry of industry is expected to give Elf Aquitaine, the Oil group controlled by the French state, total clearance to take over the UK petrol-station.



of

to

by

Aquitaine,]e, [the oil group

industry is

French

give

the

Elf

Neighborhood Sampling

- Incorporates clustering hypothesis to context selection.
- Context words sampled from fixed-size neighborhood of similar documents.
- Words that do not appear in current document may be used as well.

DE _{idf}	89.29 ^a	87.71 ^a
DE _{nn}	89 .34 ^a	87.75 ^a
DE _{disc.pv}	88.37	87.05 ^a
DE _{disc.idf}	88.82	87.97 ^{abc}
DE _{disc.nn}	88.87	88 . 01 ^{abc}

Markers *a*, *b* and *c* denote significant improvements over PV, DE_{idf} and DE_{nn} resp. (one-tail t-test with p < 0.01). trade-off.

THE UNIVERSITY of EDINBURGH

informatics

AP88-89

- Discourse-based sampling helps slightly on RCV1, not on IMDB.
 - Parsing quality.
 - Idiosyncrasies of sentiment analysis.
 - Better EDU filtering strategies?

Qualitative Evaluation

	PV	DE _{idf}	DE _{disc.idf}
health	care	medical	medical
	medical	physician	hospital
	education	hospital	nhs
	benefits	therapy	nursing
olitics	political	political	political
	politicians	party	party
	candidature	polls	election
0	dirty	election	leader
er	cooler	temperatures	temperatures
		we at a smaller state	

Ranked words against common RCV1 topics.

- PV produces embeddings that reflect co-occurrence patterns.
- Document-wide context sampling highlights topical similarities.

Contact: s.angelidis@sms.ed.ac.uk

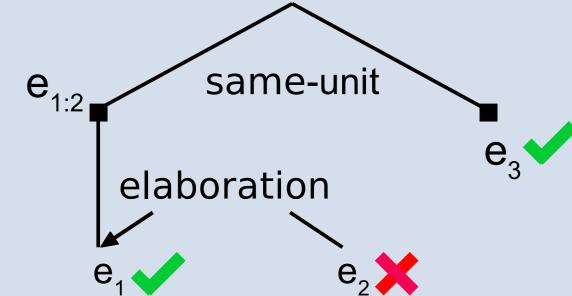
state, $]e_2$ [total clearance to take over the UK petrolstation. $]e_3$

Ministry

The

expected

controlled



Discourse-based Sampling

- Attempts to *inject* discourse-level linguistic information.
- Not all parts of a document are equally important.
- We parse documents using an RST-style discourse parser (Feng and Hirst, 2012).
- Potentially insignificant *elementary discourse unit* (EDU) types are filtered-out before context selection.
- warmmeteorologistdrydrywarmmeteorologistwarmerrainprecipitation

Based on cosine similarity

Conclusions

- Argued that the window-based contexts of the Paragraph Vector model may have detrimental effect on the learned document embeddings.
- Proposed a Context Sampling Framework that allows for the instantiation of context policies of varying complexity.
- Achieved significant improvements over PV on multiple tasks & datasets.