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Why Document Embeddings?

» Embedding models are used widely for learning word representations from
vast amounts of unlabeled text.

» Represent meaning of longer pieces of text — embedding composition.
» Averaging / Syntax-aided composition:

> Can work for phrases or short sentences.
> Severe loss of semantic information as sequence length increases.

» CNNs / Recurrent NNs / Hierarchical NNs:

> State-of-the-art in many supervised tasks.
> Computationally demanding (need GPUs).

» Middle ground — Paragraph Vector (Le and Mikolov, 2014).
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» Extension of Skip-gram (Mikolov et al., 2013).

» Word and document embeddings are learned jointly w/o supervision.

» Words are paired with their window-based contexts.

» Document embeddings are also used to predict each word they contain.

» Issue: Are selected word-context pairs representative of content?
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This work: Context Sampling Framework

» We introduce arbitrary contexts via Context Sampling.
» Different sampling policies will result in different embedding spaces.
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Evaluation

» Compare the quality of document embeddings learned using PV's
window-based contexts and our context sampling policies (DE).

» We chose 2 document-centric tasks:

> Ad-Hoc Search

> Document Classification

Results: Ad-hoc Search

» Used 2 established TREC collection for Information Retrieval.
» Learned query and document embeddings (no supervision).

» Documents ranked by their cosine distance to a query in embedding space.
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* indicates significant improvement based on a two-tailed t-test with p < 0.01.

» Can provide complementary signal to term-based IR methods.

Results: Document Classification

» Sentiment Analysis (IMDB) & Topic Classification (RCV1).
» Learned document embeddings (no supervision).

» Trained logit classifier using document embeddings as features.
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RST-style discourse parser (Feng

and Hirst, 2012). » Argued that the window-based contexts of the Paragraph Vector model may
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» Achieved significant improvements over PV on multiple tasks & datasets.
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